Бабочка и ураган. Теория хаоса и глобальное потепление
Шрифт:
В следующей главе на примере этого отображения мы объясним основные понятия, связанные с хаосом.
Термин «хаос» был официально принят за год до публикации Мэя. В 1975 году профессор Иорк впервые использовал этот термин в современной научной литературе, в частности в своей статье «Период, равный трем, означает хаос», написанной в соавторстве с Ли Тянь-Янем. Несколько лет спустя, в 1978–1979 годах, физик Митчелл Фейгенбаум (род. 1944) эвристически (то есть с помощью нестрогих методов, приблизительных подсчетов) обнаружил определенные универсальные постоянные, характеризовавшие переход от периодического движения к хаотическому.
Не следует забывать, что в конце 1970-х — начале 1980-х годов исследования возможностей практического применения
Еще одна область применения теории хаоса, важность которой неуклонно повышается, связана с биологией при изучении неравномерности пульса и распространения заболеваний. Еще более многообещающими кажутся исследования в медицине и нейробиологии, в частности в электроэнцефалографии, где выявление хаотических и нехаотических участков (любопытно, что именно нехаотические участки являются аномальными) на энцефалограмме сегодня считается единственным способом раннего диагностирования заболеваний мозга.
* * *
ОПЕРЕЖАЯ ВРЕМЯ
Весьма вероятно, что первой динамической системой, с которой столкнется человек, только начавший изучение теории хаоса, будет логистическое отображение: f(x) = 4х( 1 — х). Несмотря на кажущуюся простоту, это отображение обладает очень сложной динамикой, которая включает хаотическое поведение. Логистическая функция является решением логистического уравнения, которое впервые описал бельгийский ученый Пьер Франсуа Ферхюльст (1804–1849). Когда в исследовании роста населения, опубликованном в 1838 году, Ферхюльст ввел логистическое уравнение для моделирования „ _ роста населения и последующей стабилизации его численности, подтверждаемого демографической статистикой, он не мог и представить, что более чем через 100 лет его модель привлечет огромное внимание исследователей и станет классическим примером теории хаоса.
Пьер Франсуа Ферхюльст.
* * *
СТРАННЫЕ АТТРАКТОРЫ И ФРАКТАЛЫ
Большинство странных аттракторов в хаотических системах представляют собой фрактальные множества. Именно фрактальная геометрия, созданная Бенуа Мандельбротом (1924–2010) в 1977 году на основе передовых трудов Пьера Фату и Гастона Жюлиа, опубликованных в 1918 году, считается геометрией природы. Форму фракталов имеет множество природных объектов (морские побережья, листья растений, раковины моллюсков, легкие и другие органы человека, галактики, созвездия и даже кольца Сатурна, сегменты которых напоминают фрактальные
* * *
Несмотря на вышесказанное, объективная и не лишенная скепсиса характеристика, приведенная Давидом Рюэлем в книге «Случайность и хаос», полностью корректна:
«Математическая теория дифференцируемых динамических систем выиграла от притока «хаотических» идей и в целом не пострадала от современной тенденции (техническая сложность математики препятствует мошенничеству). Однако физика хаоса, несмотря на частые триумфальные объявления о «новых» прорывах, в настоящее время практически не дает интересных открытий.
Мы не будем излагать искаженное видение хаоса, характерное для некоторых постмодернистов и других мыслителей. Критики утверждают, что высокая популярность теории хаоса и фрактальной геометрии не соответствует их реальной научной ценности. Теория хаоса применяется даже при анализе художественных произведений и в управлении предприятиями.
Нельзя отрицать, что хаос открыл новый путь в науке. Эту новую науку, объединяющую множество дисциплин, математики называют теорией хаоса, или теорией динамических систем, физики — нелинейной динамикой, все остальные — нелинейной наукой. Это наука об эффекте бабочки, о чувствительности к начальным условиям, о случайных, беспорядочных и неправильных траекториях, о непериодическом и нестабильном поведении, о гомоклинических орбитах, о растяжении и складывании траекторий, о странных аттракторах и многом, многом другом. Войдем же в дверь, которую открыла перед нами теория хаоса.
* * *
ХАОС НА ЗЕМЛЕ И НА НЕБЕ
Если Роберт Мэй представил парадигму дискретной хаотической динамической системы в одном измерении (логистическое отображение), то французский астроном Мишель Эно предложил парадигму дискретной хаотической динамической системы в двух измерениях — так называемое отображение Эно. В 1976 году, спустя несколько лет после того, как свет увидела работа Лоренца с описанием модели непрерывной хаотической динамической системы, Эно опубликовал статью «Двухмерное отображение со странным аттрактором», в которой представил преобразование плоскости, определяемое формулой
где а и b — две постоянные, которые обычно принимаются как а = 1,4 и b = 0,3. Это отображение Н представляет собой упрощенную версию сечения Пуанкаре для аттрактора Лоренца.
Если мы применим Н несколько раз подряд к квадрату, то увидим, как он будет менять форму: сначала он будет превращаться во все более вытянутый четырехугольник, затем — в бесконечно запутанную подкову. Эта бесконечно запутанная структура (фрактал), к которой приближаются последовательные итерации Н, и будет странным аттрактором Эно.
Хотя Эно утверждал, что описал странный аттрактор (то есть аттрактор, имеющий фрактальную природу), правильность его выводов подтвердили шведские математики Майкл Бенедикс и Леннарт Карлесон лишь в 1991 году.
Аттрактор Эно имеет фрактальную структуру, то есть обладает самоподобием (он повторяется в различных масштабах снова и снова).
Глава 3. Но, господин математик, что такое этот ваш детерминированный хаос?
Но, господин математик, что такое этот ваш детерминированный хаос?
Кто исчислит песок Иакова и число четвертой части Израиля?