Чтение онлайн

на главную

Жанры

Бабочка и ураган. Теория хаоса и глобальное потепление
Шрифт:

* * *

СДВИГ БЕРНУЛЛИ

Символическая динамика имеет и другие интересные свойства.

1) Она не поддается компьютерным вычислениям. Так как компьютеры работают с ограниченным числом десятичных знаков в записи дробей, для них все числа представляют собой точные десятичные дроби. Следовательно, если мы запрограммируем сдвиг Бернулли, то увидим на экране компьютера, что аттрактором всех орбит (подобно орбитам всех точных дробей) будет точка 0. Ни малейшего намека на хаос.

2) Существуют периодические орбиты с произвольным периодом. Так как периодические дроби могут иметь произвольный период (например, состоящий из шести цифр:

то будут наблюдаться орбиты с произвольными длинами периодов: 1, 2,3,4, 5. Математики Ли Тянь-Янь и Джеймс
Йорк на основе теоремы Шарковского сформулировали знаменитую теорему, согласно которой если для непрерывной функции существует орбита с периодом 3, то для нее существуют орбиты с любым периодом. Точная формулировка теоремы звучит так: существование 3-цикла подразумевает существование n-цикла (для n — 1,2,3,4, 5…). Ли и Йорк удачно подытожили смысл теоремы в названии свой статьи: «Период, равный трем, означает хаос».

3) Адамар и Смэйл обнаружили, что символическая динамика — один из самых заметных признаков хаоса. И соленоид, и подкова Смэйла, и аттрактор Лоренца обладают символической динамикой. Если мы рассмотрим десятичные дроби в двоичной системе счисления, то сможем описать каждую траекторию аттрактора Лоренца последовательностью нулей и единиц.

К примеру, траектория 0,11000101… сначала совершит два витка вокруг правой части аттрактора (так как после запятой записаны две единицы), затем — три витка вокруг его левой части (так как за двумя единицами следуют три нуля подряд) и так далее. Применив эту символическую динамику, можно доказать существование хаоса в системе Лоренца: каждая траектория будет беспорядочно вращаться вокруг правой или левой части аттрактора.

* * *

Рассмотрим теперь логистическое отображение Мэя, которое задается следующим уравнением в конечных разностях:

хn+1 = n (1 — хn).

Иными словами, для данного начального условия х на интервале между 0 и 1 орбита х рассчитывается путем последовательного вычисления значений функции f(х) = kx (1 — х), где k — параметр, больший 1, но меньший 4. Поведение логистической системы, названной так потому, что она используется для моделирования динамики численности определенных популяций, удивительным образом зависит от значения k. Если k меньше некоторого критического значения, которое, по оценкам, составляет 3,569945…, то траектории будут иметь правильную форму. При превышении этого критического значения траектории будут стремиться к хаосу. Эта дискретная динамическая система четко показывает, что простые математические действия могут обладать неожиданно сложными свойствами.

Функция f(х) является функцией второй степени:

f(х) = kx (1 — х) = kxkx2.

Иными словами, f(х) — нелинейная функция, и именно эта нелинейность делает возможным хаотическое поведение: в силу нелинейности небольшие отклонения начальных условий могут приводить к значительным изменениям.

Изучим динамику логистического отображения для значений k, меньших критического, к примеру для k = 2. Примем в качестве начального условия x0  = 0,8 и определим его орбиту с помощью калькулятора:

x1 = f(х0) = 2 х0(1 — х0) = 2•0,8•(1 — 0,8) = 2•0,8•0,2 = 0,32

х2 = f(х1) = 2х1(1 — х1) = 2•0,32•(1 — 0,32) = 2•0,32•0,68 = 0,4352

х3 = f(х2) = 2х2(1 — х2) = 2•0,4352•(1 — 0,4352) = 2•0,4352•0,5648 = 0,49160192.

Теперь, когда мы знаем, как рассчитываются первые члены орбиты, вычислим

следующие члены напрямую:

х4 = 0,4998589…

х5 = 0,4999998…

х6 = 0,4999999…

Обратите внимание на полученные значения. Что вы видите? Они последовательно приближаются к 0,5. Рассматриваемая траектория четко приближается к пределу — точечному аттрактору, расположенному в точке 0,5. Ради любопытства вычислим орбиту точки 0,5: так как f (0,5) = 2•0,5•(1 — 0,5) = 22424•0,5•0,5 = = 0,5, орбита этой точки будет стационарной (значения функции всегда будут равны 0,5). Следовательно, орбита точки 0,8

сходится к точке равновесия.

Рассмотрим, как наша траектория сходится к этой фиксированной точке, геометрически. Используем компьютерную программу, чтобы показать, как изменяются значения орбиты (представленные на вертикальной оси) с ростом числа итераций (откладываются на горизонтальной оси).

Нетрудно видеть, что значения орбиты очень быстро стабилизируются в окрестности точки 0,5, что мы уже вычислили при помощи калькулятора.

Далее будем изображать орбиту точки на так называемой диаграмме-паутине.

Построив график f(х) = 2х (1 — х) (он будет представлять собой параболу, так как f(х) — функция второй степени), рассмотрим начальное условие x0 = 0,8. Далее определим орбиту этой точки графически. Проведем вертикальную линию через точку с абсциссой x0 = 0,8 до пересечения с параболой — графиком функции f(x).

Затем из точки пересечения этой линии с параболой проведем горизонтальную линию до пересечения с диагональю у = х. Полученная абсцисса (координата на горизонтальной оси) будет указывать положение точки пересечения построенной линии с диагональю и будет соответствовать х1 Далее будем смещаться вертикально (вверх или вниз), пока вновь не пересечем график f(х). Повторив описанные выше действия, получим ломаную линию. Абсциссами ее вертикальных отрезков будут x0, х1х2х3. Эта ломаная линия укажет, куда будет стремиться орбита x0.

На этом графике можно видеть, как «паутина» точки x0 = 0,8 сходится к фиксированной точке, в которой пересекаются парабола — график функции f(х) — и прямая — график функции у = х. Как и следовало ожидать, этой фиксированной точкой будет точка 0,5.

Повторим описанные выше действия для другого значения параметра k. Примем его равным не 2, а 3,1. Орбита начальной точки x0 = 0,8 будет выглядеть так.

При значениях k, больших 3, происходит нечто удивительное: хотя движение по-прежнему будет оставаться правильным, орбита точки 0,8 уже не будет стремиться к какой-то одной точке. Вместо этого она будет колебаться между значениями 0,56 и 0,76. Точечный аттрактор 0,5 словно бы разделился на две точки с координатами 0,56 и 0,76. По сути, это пример орбиты с периодом, равным 2, так называемого 2-цикла, так как мы видим два точечных аттрактора. Новая паутина, которая будет порождать уже не точку, а квадрат, выглядит так.

Продолжим увеличивать значения k и рассмотрим = 3,5. Орбита x0 = 0,8 будет выглядеть так.

Теперь орбита будет колебаться между четырьмя точками. Их координаты приблизительно равны 0,39, 0,51, 0,82 и 0,86. Это уже 4-цикл, так как одни и те же значения будут повторяться каждые четыре шага. Кажется, что с увеличением k периоды будут удваиваться: 1, 2, 4. Сначала мы наблюдали единственный точечный аттрактор, затем — два, теперь — четыре. Логично предположить, что далее их число будет равняться восьми, шестнадцати, тридцати двум и так далее. Наблюдаемая динамика уже не столь проста, однако ее по-прежнему можно назвать более или менее регулярной.

Поделиться:
Популярные книги

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели