Бабочка и ураган. Теория хаоса и глобальное потепление
Шрифт:
Даже если точки, отмеченные красящим веществом, изначально будут находиться очень близко друг к другу, в конечном итоге они окажутся в произвольных частях аттрактора. Прогнозирование финального состояния любой из этих точек при сколь угодно малой ошибке измерения невозможно — в зависимости от допущенной ошибки финальные состояния точек могут располагаться в любой части странного аттрактора. Хаос перемешивает орбиты подобно тому, как пекарь замешивает тесто. Поведение орбит геометрически описывается посредством операций растяжения и складывания. Орбиты должны растягиваться, при этом будут возрастать ошибки (эффект бабочки), а также складываться и постепенно сплетаться по мере приближения к аттрактору (эффект карточной колоды). Растягивание увеличивает неопределенность, при складывании изначально далекие друг от друга траектории сближаются, а информация об исходном состоянии системы уничтожается. Траектории смешиваются, как смешиваются карты в колоде в руках умелого игрока. Так как операции растяжения и складывания повторяются бесконечное число раз, в аттракторах хаотических систем должно наблюдаться множество сгибов внутри каждого сгиба. Именно поэтому с геометрической точки зрения хаотические аттракторы намного сложнее классических. По мере увеличения
Мы увидели, что существуют математические системы, обладающие хаотической динамикой. Но каково их практическое значение? Что такое хаос: правило или исключение?
Хаос вездесущ и проявляется повсеместно: и при движении небесных тел (задача трех тел), и при колебаниях двойных маятников, в потоках на грани турбулентности (поток Рэлея — Бенара), в некоторых химических реакциях (реакция Белоусова — Жаботинского), в определенных биологических популяциях и так далее. Открытие повсеместного присутствия хаоса стало третьей великой революцией в науке за последние 100 лет, после открытия теории относительности и квантовой механики.
Достойный упоминания пример хаотического движения в Солнечной системе — движение Гипериона, спутника Сатурна, по форме напоминающего картофелину, который, как может показаться, совершает случайные колебания. Гиперион движется вокруг Сатурна по орбите правильной формы, однако вращается вокруг себя совершенно беспорядочно: в результате быстрого хаотического движения он переворачивается каждые 6 часов и при вращении вокруг своей оси в буквальном смысле подскакивает.
* * *
МИТЧЕЛЛ ФЕЙГЕНБАУМ В ПОИСКАХ ХАОСА
Митчелл Фейгенбаум (род. 1944) — специалист по математической физике, первый, кто начал изучать хаос с помощью компьютеров. В 1975 году методом проб и ошибок он обнаружил число, которое сегодня называется постоянной Фейгенбаума и характеризует переход от периодического движения к хаотическому. Мы уже наблюдали это любопытное явление, когда говорили о логистическом отображении: по мере того как мы постепенно изменяли значение параметра к, периоды орбит удваивались. На смену орбитам с периодом 1 приходили орбиты с периодом 2,4,8,16,32 и так далее, после чего, при превышении критического значения к, равного 3,569945…, наступал хаос.
Удвоение периодов орбит, начиная с k — 2 и заканчивая этим значением, происходит так быстро, что в конечном итоге период удваивается бесконечное число раз. Так возникает хаос. По мере увеличения к возрастает и сложность логистической системы: из стационарной она становится периодической, затем — хаотической. Если мы представим точку или точки, к которым сходится орбита х — 0,8 в логистическом отображении для различных значений параметра k, получим диаграмму, представленную на следующей странице.
На этой диаграмме значения к откладываются по горизонтальной оси, значения, к которым стремится орбита х — 0,8, — по вертикальной. Если мы зафиксируем значение k, то вертикальный разрез будет изображением соответствующего аттрактора на интервале от 0 до 1. К примеру, при k — 3,0 вертикальная линия пересекает график всего в одной точке. Это означает, что точка имеет период, равный 1, и является фиксированной. Другой пример: при k — 3,2 вертикальная линия пересечет график в двух точках. Это означает, что орбита представляет собой 2-цикл. По мере движения по горизонтали от k — 2,4 до k — 4 ветви дерева Фейгенбаума будут раздваиваться вследствие удвоения периода. Когда мы преодолеем критическое значение 3,569945…, аттрактор, определяемый вертикальными линиями, превратится в беспорядочную полосу. Он будет представлять собой фрактал (Канторово множество). При значениях k, превышающих пороговое, будут наблюдаться отдельные островки периодичности. К примеру, при k — 3,82 на диаграмме наблюдается полоса: если мы проведем воображаемую вертикальную линию, она пересечет диаграмму всего в трех точках: вверху, в середине и внизу. Иными словами, орбита будет представлять собой 3-цикл. Как вы уже знаете, «период, равный трем, означает хаос», поэтому то хаотическое нагромождение точек, которое наблюдается на диаграмме для последующих значений параметра, не должно казаться таким уж удивительным.
Фейгенбаум вычислил отношения относительных расстояний между ветвлениями (иными словами, между размерами ветвей дерева) и заметил, что эти отношения в пределе стремились к 4,669201… вне зависимости от того, какое отображение рассматривалось — логистическое или любое другое.
Следовательно, найденная им постоянная была универсальной. Хотя Фейгенбаум обнаружил эту постоянную эвристическим методом, а не с помощью формального доказательства, его открытие считается гениальным.
Бифуркационная диаграмма, или диаграмма Фейгенбаума, для логистического отображения.
* * *
Кроме того, в 1988 году двое ученых из MIT, Джеральд Джей Сассман и Джек Уисдом, показали, что движение Плутона также является хаотическим. На самом деле траектория Плутона особенно интересна: его орбита пересекается с орбитой Нептуна, и, возможно, в не столь далеком будущем Нептун и Плутон столкнутся, и произойдет настоящая космическая катастрофа. С помощью суперкомпьютера Сассман и Уисдом рассчитали траекторию Плутона на ближайшие 845 млн лет и обнаружили, что в силу неопределенности исходных условий две изначально близкие траектории будут существенно различаться уже спустя всего 20 млн лет — совсем небольшой промежуток времени по сравнению с возрастом Солнечной системы, который составляет как минимум 4,5 млрд лет. К счастью, при движении
Гиперион — спутник Сатурна неправильной формы. Фотография сделана зондом Кассини-Гойгенс.
Есть и другие примеры, показывающие, как проявляется хаос в нашей Солнечной системе. Пояс астероидов между Марсом и Юпитером движется под действием силы притяжения Солнца, однако подвержен колебаниям, вызванным притяжением Юпитера. Таким образом, можно говорить о задаче трех тел (Солнце, Юпитер и пояс астероидов). Некоторые движения в этой системе будут равномерными, другие — хаотическими. Астероиды, движущиеся равномерно, остаются на своих орбитах, а те, что движутся по хаотическим траекториям, через некоторое время сходят с орбит и теряются в космосе. Следовательно, астероиды распределены неоднородно, между ними есть промежутки — щели Кирквуда, названные в честь американского астронома, который открыл их еще в 1860 году. Если при вращении вокруг Солнца астероид пересекает одну из этих зон, его период вращения входит в резонанс с периодом обращения Юпитера, и газовый гигант уводит астероид с орбиты. Если астероид, сойдя с орбиты, направится к Марсу или к Земле, то гармонии в Солнечной системе придет конец. Нечто похожее происходит с полосами между кольцами Сатурна: частицы, движущиеся в зоне резонанса, сходят с орбит, в результате чего образуются щели.
* * *
АНТИНЬЮТОНОВСКИЙ МИР
Американский физик Джулиан Спротт (род. 1942) описал мир, параллельный нашему, в котором первые два закона Ньютона выполняются, а третий, закон действия и противодействия, — нет. В этом мире силы взаимодействия двух тел не равны по величине и противоположны по направлению, а равны и по величине, и по направлению. Иными словами, когда лягушка, севшая на кувшинку, спрыгивает с нее, то кувшинка не отклоняется назад, а словно бы тянется вслед за лягушкой. Итоговая динамика обладает рядом любопытных свойств, в число которых входит хаотическое по ведение в задаче двух тел.
Хаотическая орбита в антиньютоновской задаче двух тел.
* * *
Но удивительнее всего хаотическое поведение не сложных систем (Солнечная система, погода, климат, атмосфера), а очень простых — оно свойственно, в частности, обычному маятнику. И действительно, если мы рассмотрим двойной маятник, который представляет собой обычный маятник, к концу которого подвешен еще один, то увидим, что при превышении определенного уровня энергии его движение становится хаотическим и абсолютно непредсказуемым.
Хаотическое движение двойного маятника.
* * *
НЕПЛОТНО ЗАКРЫТЫЙ КРАН
Многие из нас хотя бы раз наблюдали, как из неплотно закрытого крана капает вода. Но не все знают, что за этим явлением скрывается хаотическая система. Очень часто в падении капель нет никакой закономерности, и предсказать, когда упадет следующая капля, нельзя. Это явление изучил Роберт Шоу совместно с другими учеными из Калифорнийского университета. Его эксперимент начался с измерения временных промежутков между падениями отдельных капель с помощью микрофона. Затем полученные значения были сгруппированы попарно, и получилась последовательность пар чисел — точек плоскости. Изобразив эти точки на графике, исследователи получили сечение аттрактора. Если ритм падения капель был периодическим, на графике была видна разновидность предельного цикла, если же ритм был непериодическим, на графике наблюдался странный аттрактор. Это было не пятно, а структура, имеющая форму подковы — наиболее явного отпечатка, который оставляют операции растяжения и складывания траекторий, порождающие хаос. Здесь случайность опирается на детерминированный фундамент.
* * *
В последние годы теория хаоса, нелинейная динамика и науки о сложности в целом играют важную роль в медицине, биологии и смежных областях. Слияние точных и гуманитарных наук всего за несколько лет доказало свою эффективность. До середины XX века медицину и физику, казалось, разделяла непреодолимая стена: единственным применением физики в медицине стало использование радиоволн для диагностики и лечения раковых заболеваний. Однако начиная с 1950-х годов в этой стене, к счастью для всех нас, стали возникать бреши: так, медицинская визуализация и получение изображений внутренних органов стали возможными только благо даря симбиозу математики, физики и медицины.
Теория хаоса также перестала быть наукой об абстрактных закономерностях и в руках специалистов превратилась в мощнейший инструмент. Применение теории хаоса в медицине не позволяет делать прогнозы и решать какие-либо частные задачи — оно скорее позволяет описывать некоторые аспекты поведения сложных биологических систем с помощью определенных «магических чисел», например экспонент Ляпунова, фрактальных размерностей и других. Иными словами, теория хаоса может использоваться при классификации состояний организма, наиболее ценным при этом будет не полученное числовое значение, а переформулирование медицинских задач, переход от наблюдений к моделированию и измерениям. Прекрасным примером этому служат кардиология, электроэнцефалография и магнитоэнцефалография. Через несколько лет исследования хаоса и фракталов в физиологии помогут получить важные показатели, позволяющие понять, что именно происходит в организме в ходе старения или во время болезни. Важнейшее открытие таково: организм здорового человека — сложная хаотическая система, организм больного человека, напротив, является строго упорядоченным.