Бабочка и ураган. Теория хаоса и глобальное потепление
Шрифт:
Позднее мы рассмотрим это необычное удвоение периода еще раз, а пока ограничимся тем, что изобразим новую паутину, образованную двумя основными квадратами.
И наконец, осмелимся превысить критическое значение 3,569945. Рассмотрим k = 3,9. Ситуация радикально изменится. Орбита x0 = 0,8 будет выглядеть так.
Орбита стала хаотической! В ней больше не наблюдается никаких закономерностей. Она даже не является квазипериодической, а «прыгает» с одного места на другое и кажется случайной. А что, если мы рассмотрим k = 4?
То
Однако орбита и диаграмма-паутина точки х0 = 0,8 — не исключение: все остальные возможные орбиты и диаграммы будут выглядеть точно так же. И вновь мы наблюдаем эффект карточной колоды.
На этом сюрпризы не заканчиваются: два различных начальных условия, близких друг к другу, определяют орбиты, которые по прошествии определенного времени будут выглядеть совершенно по-разному. Примем k = 4. Если мы хотим изучить орбиту точки а = 0,900 и по ошибке введем значение Ь = 0,901 (например, при измерении мы допустили ошибку, равную одной тысячной), то увидим, что орбиты а и b вскоре будут значительно отличаться, хотя изначально они были близки друг к другу. Орбита точки а будет образована значениями {0,900; 0,360; 0,9216; 0,2890; 0,8219; 0,5854; 0,9708…}, орбита точки b — значениями {0,901; 0,3568; 0,9180; 0,3012; 0,8419; 0,5324; 0,9958…}. Иными словами, исходная разница в одну тысячную через несколько итераций будет иметь порядок нескольких сотых. Всего за семь итераций разница увеличится в 20 раз! По прошествии определенного времени реальная и прогнозная траектории уже не будут иметь ничего общего.
И вновь мы наблюдаем эффект бабочки.
Подведем итог: изменяя значения параметра k в логистическом отображении от k = 2 до k = 4, мы показали, как система постепенно приближается к хаотическому состоянию. А где же операции растяжения и складывания, которые порождают хаос? Прямо у нас перед глазами. Логистическая функция f(х) = kx(1 — х) «растягивает» числовой интервал между 0 и 1 вследствие умножения х на k. Затем этот интервал «складывается пополам» в результате умножения kx на (1 — х) — число, меньшее единицы. Таким образом, числовой интервал растягивается и складывается, подобно подкове.
Хотя сегодня в математике не существует четкого определения детерминированного хаоса, он рассматривается как совокупность эффекта бабочки и эффекта карточной колоды, которые мы наблюдали и в сдвиге Бернулли, и в логистическом отображении Мэя.
От какого класса динамических систем стоит ожидать хаотического поведения?
Как вы уже знаете, хаос нужно искать среди нелинейных систем — только в них действие совокупности причин может не равняться совокупному действию этих причин по отдельности и приводить к совершенно неожиданным последствиям. Также (об этом мы не упоминали) нужно искать среди неинтегрируемых систем. Система называется интегрируемой, если ее траектории или решения можно явно выразить при помощи известных функций. Интегрируемые системы (линейные и нелинейные) предсказуемы, так как известна формула, позволяющая вычислить орбиту любой точки в любой момент времени. В неинтегрируемых системах, напротив, решение нельзя представить в виде формулы, поэтому для них нельзя составить прогноз на бесконечно большой период времени. Кроме того, если мы рассмотрим такие си¬стемы с точки зрения топологии, то увидим, что траектории будут тесно сплетаться между собой.
Если мы сведем две рассмотренные выше категории воедино, то увидим, что нелинейные и неинтегрируемые системы обладают беспорядочным, непредсказуемым поведением, указывающим на присутствие хаоса. Следует заметить: даже тогда, когда хаос требует нелинейности (чтобы небольшие изменения начальных условий могли вызывать значительные изменения) и неинтегрируемости (чтобы мы не могли делать прогнозы в долгосрочном периоде), нелинейная и неинтегрируемая динамика необязательно будет хаотической. Существуют нелинейные и неинтегрируемые системы, демонстрирующие равномерное и предсказуемое поведение. Математики говорят, что эти две характеристики — нелинейность и неинтегрируемость — являются необходимыми, но не достаточными.
С другой стороны, среди нелинейных и неинтегрируемых систем выделяют два подвида: гамильтоновы системы, сохраняющие энергию, и диссипативные, которые не сохраняют энергию. Этим двум видам систем соответствуют две разновидности детерминированного хаоса, известные сегодня.
Гамильтонов хаос наблюдается в системах, сохраняющих энергию, например в системе из трех тел, изученной Пуанкаре, в звездной системе, рассмотренной Эно и Хайлсом, в моделях бильярда, описанных Адамаром и Синаем. Как мы рассказали, это хаотическое поведение возникает в силу бесконечного числа пересечений сепаратрис седловой точки, в результате
Негамильтонов хаос, напротив, наблюдается в системах, не сохраняющих энергию, к примеру, в системе Лоренца. Так как эти системы не сохраняют энергию, в них присутствуют аттракторы и возникают наиболее известные хаотические объекты — странные аттракторы, представляющие собой промежуточное звено между теорией хаоса и фрактальной геометрией.
Странный аттрактор — это аттрактор хаотической системы, которому свойственна фрактальная геометрия. Фрактал — это геометрический объект неправильной формы с бесконечным множеством деталей, обладающий самоподобием, и, скорее всего, имеющий дробную размерность. Странные аттракторы — сложные структуры, которые при последовательном увеличении демонстрируют самоподобие, свойственное фракталам: в них вновь и вновь проявляется одна и так же структура. Кроме того, многие из них имеют дробную размерность. Иными словами, если мы находимся на плоскости, то размерность нашего фрактального аттрактора будет больше 1, но меньше 2 и составит, к примеру, 1,5: аттрактор будет занимать больше пространства, чем кривая, но меньше, чем плоскость. Если мы находимся в пространстве, размерность фрактального аттрактора будет больше 2, но меньше 3 и составит, к примеру, 2,25: аттрактор будет занимать больше пространства, чем плоскость, но меньше, чем объемное тело. Таков смысл дробной размерности. К примеру, размерность аттрактора Лоренца примерно равна 2,06. Любопытно, что с момента открытия аттрактора Лоренца считалось, что он имеет «странный» характер (то есть является аттрактором хаотической системы и, возможно, имеет фрактальную геометрию), однако строгое математическое доказательство этого было найдено лишь в 2000 году. В 1998 году Стивен Смэйл предложил доказательство этого утверждения в качестве одной из открытых математических задач XXI столетия.
В 2002 году математик Уорвик Такер смог строго доказать существование аттрактора Лоренца в статье под названием «Аттрактор Лоренца существует». Аттрактор в форме бабочки, изображенный Лоренцем на экране компьютера, стал реальностью. Аналогичная ситуация произошла со странным аттрактором Эно, открытым с помощью компьютера в 1976 году: его существование было математически доказано лишь в 1987 году усилиями шведского математика Леннарта Карлесона, лауреата Абелевской премии 2006 года.
< image l:href="#"/>Странный аттрактор Уэды. Этот аттрактор, напоминающий водоворот, представляет собой сечение Пуанкаре для хаотической системы.
Слева направо и сверху вниз — последовательность увеличенных изображений аттрактора Эно. На всех иллюстрациях изображен один и тот же узор — складывающиеся кривые.
Судьба аттрактора Рёсслера, напротив, сложилась не столь удачно. Отто Рёсслер предложил ряд уравнений, описывающих химическую реакцию Белоусова — Жаботинского. Эта реакция протекает в колебательном режиме: участвующие в ней вещества непрерывно соединяются и распадаются, и в результате образуются удивительные узоры красно-синего цвета. Компьютерное моделирование решений системы дифференциальных уравнений обладало хаотическим поведением, подобным тому, что рассмотрел Аоренц при решении своей системы. Рёсслер, подобно Лоренцу, предположил, что в системе присутствует странный аттрактор — аттрактор Рёсслера, существование которого все еще не доказано. Никто до сих пор не знает, действительно ли посреди хитросплетения траекторий находится аттрактор Рёсслера или это всего лишь иллюзия, возникающая при компьютерном моделировании.
Странные аттракторы Лоренца (слева) и Рёсслера (справа). Существование последнего до сих пор математически не доказано.
Какое значение для динамики имеет фрактальная геометрия аттрактора? Можно предположить, что никакого, но это не так. Пуанкаре, Смэйл и Лоренц учат, что в основе любой динамики всегда лежит геометрия.
В классических аттракторах (фиксированных точках и предельных циклах — еще не так давно другие аттракторы были неизвестны) соседние орбиты всегда располагаются близко друг к другу, небольшие ошибки, как и предполагал Лаплас, заключены в определенных границах, таким образом, можно делать долгосрочные прогнозы. Если говорить о странных аттракторах, присущих хаотическим системам, то все обстоит иначе: две орбиты с близкими начальными условиями располагаются близко друг к другу лишь на коротком промежутке времени, после чего очень быстро отдаляются. Поведение соседних траекторий в странном аттракторе можно проиллюстрировать следующим экспериментом: если представить, что они действуют на маленькую каплю красящего вещества в жидкости, то капля постепенно примет форму очень длинной и тонкой нити, словно пронизывающей весь аттрактор.