Чтение онлайн

на главную

Жанры

Биохимия старения
Шрифт:

Рис. 2.3. Предполагаемое закручивание суперспирали ДНК вокруг сердцевины нуклеосомы. Отмечены места расщепления ДНК нуклеазой [117]

Сердцевина нуклеосомы содержит по две молекулы каждого из Н2А-, Н2В-, Н3- и Н4-гистонов, которые образуют октамер. Положительно заряженные вытянутые цепи этих гистонов электростатически связаны с отрицательно заряженной ДНК. Полагают, что четыре гистона расположены относительно ДНК следующим образом:

Два гистона, Н3 и Н4, богатые аргинином, вероятно, взаимодействуют с двумя концами фрагмента ДНК. Когда эти гистоны добавляют к двухцепочечной ДНК, они образуют характерную структуру типа бублика, видимую в электронный микроскоп [129]. При воссоединении гистонов сердцевины со 140 парами оснований ДНК образуются частицы, имеющие тот же самый коэффициент седиментации, что и нуклеосомы, полученные из хроматина [36, 345]. Было также показано, что одни гистоны Н3 и Н4 образуют с ДНК структуры, похожие на сердцевины нуклеосом, устойчивые к трипсину [64, 327] и дающие картину дифракции рентгеновских лучей, похожую на картину для нативных

нуклеосом [261]. Когда гистоны Н3 и Н4 добавляют к ДНК, они связываются со 140 парами оснований ДНК, которая имеет 1,5 сверхспиральных оборота вокруг тетрамера [195]. Образующаяся структура представляет собой цилиндр с размерами 45x8x8 нм. При последующем добавлении гистонов Н2А и Н2В цилиндр сжимается и становится похожим на нативную нуклеосому. Аналогичные явления наблюдал Картер [70]. Это согласуется с высказанным ранее [198] предположением, что гистоны Н3 и Н4 играют существенную роль в образовании структуры нуклеосомы. Эти два гистона наиболее консервативны, содержат большое количество -структур и взаимодействуют друг с другом сильнее, чем с другими гистонами. По степени связывания с ДНК гистоны располагаются в следующем порядке: Н3 и Н4>Н2А>Н2В>Н1 [283]. При изучении поперечных сшивок показано, что связаны следующие пары: Н3-Н4, Н2А-Н2В и Н2В-Н4 [84].

Согласно одной из точек зрения, сначала 2 молекулы гистона Н3 и 2 молекулы гистона Н4 образуют тетрамер и связываются со 140 парами оснований ДНК, формируя основную сердцевину нуклеосомы. На втором этапе в эту структуру включаются по две молекулы гистонов Н2А и Н2В, чем и завершается образование нуклеосомы [42, 64, 258, 372]. При изучении сборки новореплицированного хроматина Drosophila показано, что гистоны Н3 и Н4 соединяются с ДНК в течение или вскоре после ее синтеза, гистоны Н2А и Н2В — на 2-10 мин позже, а гистон Н1 — через 10–20 мин, и в результате образуется зрелый хроматин [375]. По-видимому, во взаимодействие с ДНК вовлечены COOH-концы четырех гистонов, так как удаление ЫН2-концевых участков цепей гистонов не влияет на структуру нуклеосомы [371]. Гистоны Н2А и Н2В образуют димеры, взаимодействуя своими центральными неполярными областями, так что NH2– и COOH-концы остаются свободными. Гистоны Н3 и Н4 образуют димеры путем образования связей между их центральными неполярными областями и COOH-концами, так что основные NH2– концевые области нуклеосомных гистонов доступны для взаимодействия с кислотными группами ДНК [72]. Роль NH2– концевых областей четырех гистонов пока не установлена, хотя известно, что они связываются с ДНК. Мирзабеков и др. [252] путем ковалентных сшивок гистонов с 5'-концевыми фрагментами ДНК показали, что каждый гистон связан с 10 парами оснований ДНК. Сборка нуклеосом, по-видимому, контролируется НГБ. Так, очищенный препарат этих белков, выделенный из яиц Xenopus laevis, в бесклеточной системе в присутствии гистонов и очищенной ДНК катализирует образование нуклеосом [217].

Таким образом, основная структура хроматина представляет собой цепь линейно расположенных нуклеосом диаметром 10 нм, которую называют нуклеосомной фибриллой. Это низший уровень организации хроматина. Структуру более высокого порядка образуют нуклеосомы, свернутые в спираль, которая имеет диаметр 20–30 нм и шаг 10 им. Свертывание нуклеосом в спираль, по-видимому, обеспечивается богатым лизином гистоном Н1, который, как было показано, соединяется с линкерной ДНК между соседними нуклеосомами. Этот вывод следует из того, что после расщепления мононуклеосом стафилококковой нуклеазой размер ДНК уменьшается с 200 до 140 пар оснований, причем одновременно освобождается 35-парный фрагмент ДНК, связанный с гистоном Н1 [20]. Когда гистон Н1 добавляли к хроматину, который был его лишен, увеличение сродства к нему наблюдалось только до стадии образования октануклеосомы, но не далее [301]. Связывание с гистоном Н1 не только стабилизирует ДНК в линкерной области, но вызывает также ее дальнейшую конденсацию и свертывание [75]. Более высокий порядок структуры хроматина (по сравнению с цепочкой бусин) представляет собой спираль из частиц октануклеосом, образование которой обеспечивается гистоном Н1 или гистоном Н5 (в случае эритроцитов, содержащих ядра). Это согласуется с результатами, согласно которым полинуклеосомы, содержащие около шести нуклеосом, являются, по-видимому, основными матрично активными единицами хроматина, связывающимися с эндогенной РНК-полимеразой [344]. Олигонуклеосомы служат лучшими матрицами для транскрипции, чем мононуклеосомы, и на них синтезируются более длинные транскрипты [318].

Нуклеосома — динамическая единица как в структурном, так и в функциональном отношении. Как сказано выше, она состоит из двух половин, что может быть определено путем специфического связывания восьми молекул гистонов с ДНК. То, что нуклеосомы в транскрипционно активном состоянии подвержены конформационным изменениям, становится очевидным при изучении их чувствительности к ДНКазе I. Этот фермент преимущественно воздействует на те последовательности ДНК, которые активно транскрибируются. Он удаляет ДНК, кодирующую глобин, из ядер эритроцитов цыпленка, но не действует на ядра клеток мозга или фибробластов [125, 282, 367]. На ДНК яичного альбумина эритроцитов и фибробластов, в которой этот ген не транскрибируется, фермент также не действует. Стафилококковая нуклеаза, которая, как известно, расщепляет ДНК в межнуклеосомной области, не расщепляет ДНК глобина из эритроцитов цыпленка. Если мономерные нуклеосомы, полученные из этих клеток действием стафилококковой ДНКазы, обработать затем ДНКазой I, то преимущественно удаляются гены глобина. Показано [125], что ген яичного альбумина предпочтительно расщепляется ДНКазой в клетках яйцевода курицы и не расщепляется в других клетках, в которых он не транскрибируется. В клетках хомяка, трансформированных аденовирусом, последовательности ДНК аденовируса, которые легко расщепляются ДНКазой I, представляют собой участки, с которых транскрибируется мРНК. Другие вирусные последовательности резистентны к этой нуклеазе [119]. Из приведенных наблюдений следует, что во время транскрипции происходят конформационные изменения в хроматине, так что ДНК становится более чувствительной к ДНКазе I, но ее чувствительность к стафилококковой нуклеазе остается прежней. Полученные результаты подтверждаются данными электронной микроскопии [313]. Показано, что в процессе развития ооцитов трех видов Xenopus транскрипционно активный ядрышковый хроматин выглядит гладким, нуклеосомы в нем присутствуют в небольшом количестве или вообще отсутствуют. Неактивный хроматин имеет вид бусин. Пониженная транскрипционная активность хроматина коррелирует с появлением бусин в его структуре, тогда как транскрипционно активный хроматин содержит больше мононуклеосом, чем транскрипционно неактивный, что и означает увеличение той области хроматина, которая активна при транскрипции [223]. Электронно-микроскопическое изучение активно транскрибируемых рибосомных генов Physarum polycephalum показывает, что ДНК в транскрибируемом участке имеет вытянутую конформацию [179]. Таким образом, структура хроматина и, в особенности, нуклеосом подвержена конформационным изменениям в процессе транскрипции, а возможно, и репликации. Не исключено, что это вызвано связыванием с НГБ. Для ковалентной модификации гистонов различных типов, па-пример фосфорилирования, ацетилирования, метилирования и ADPрибозилирования, необходимы эффекторы.

Негистоновые хромосомные белки

Белки, связанные с ДНК эукариотов и отличающиеся от гистонов, называют негистоновыми хромосомными белками (НГБ). Они были открыты в 1946 г. Мирским и Поллистером [251]. От ДНК их отделяют с помощью смеси 2 М NaCl и 5 М мочевины. К ним относятся белки, ответственные за экспрессию и репрессию генов хроматина, а также за метаболизм и модификации хромосомных белков [112]. Они имеют изоэлектрические точки от 3,7 до 9,0. Эти белки весьма неоднородны по размеру — их молекулярная масса может составлять от ~8000 до нескольких сотен тысяч. Период полужизни НГБ сильно варьирует, но в целом он много короче, чем у гистонов. Как и гистоны, они синтезируются в цитоплазме и затем переходят в ядра, где образуют комплексы с ДНК [366]. Если ввести НГБ в цитоплазму, они быстро проникают в ядра [378]. Клетки с более высокой метаболической активностью содержат большее количество НГБ, и этим последние отличаются от гистонов, содержание которых одинаково в клетках всех типов. НГБ присутствуют в хроматине всех тканей, но структура их в разных тканях различна как в количественном, так и в качественном отношении, т. е. эти белки ткане- и видоспецифичны. С помощью методов с высоким разрешением показано, что в каждой ткани имеются сотни типов НГБ. В глиальных клетках с помощью изоэлектрофокусирования и микродиск-электрофореза было обнаружено почти 1500 НГБ [211]. По всей вероятности, некоторые из них представляют собой модифицированные НГБ, причем они синтезируются в течение всего клеточного цикла, тогда как гистоны синтезируются только в S-фазе.

После обработки хроматина тимуса теленка 0,3 М NaCl НГБ по подвижности в геле делятся на две группы: высокоподвижная группа (HMG, от англ. high mobility group) с мол. массой менее 30000 и малоподвижная группа с мол. массой более 30000 [176–178]. К HMG-белкам относятся четыре белка с большим зарядом: HMG1 HMG2, HMG14 и HMG17. Они включают 25 % основных и 30 % кислотных остатков и составляют только 3 % веса ДНК; они присутствуют во всех тканях и не являются тканеспецифичными [297]. Белки HMG ассоциированы с нуклеосомой [134]. Белки HMG1 и HMG2 имеют мол. массу около 26000. Они взаимодействуют с ДНК своими основными остатками [382, 383]. Около 50 % остатков HMG1 заряжены. Необычным является то, что его COOH-концевая область содержит последовательность из 41 чередующихся остатков аспарагиновой и глутаминовой кислот. Каждое ядро из тимуса теленка содержит ~106 молекул белков HMG1 [59, 361]. По-видимому, белки HMG играют в хроматине структурную, а не регуляторную роль. Белок HMG1 в отличие от трех остальных не содержит ароматических аминокислот. Он включает последовательность из 89 остатков и имеет мол. массу 9247. Его карбоксильный конец представляет собой цепь кислотных остатков, а NH2– конец — цепь основных остатков; центральная область богата остатками лизина. HMG17 не имеет вторичной и третичной структуры, а по последовательности входящих в него аминокислотных остатков он гомологичен гистонам Н1 и Н5. Его уникальная первичная структура с цепями кислотных и основных остатков указывает на то, что он может быть структурным белком. Показано, что белок HMG17 связывается приблизительно с 57 нуклеотидами ДНК из тимуса теленка и вызывает конформационные изменения в ДНК, сходные с теми, которые производит гистон Н1 [174], причем с ДНК связываются остатки с 15 по 40 [1].

Поскольку белки HMG имеют кислотные и основные остатки, образующие кластеры, они могут связываться с гистонами. своими кислотными группами, а с ДНК — основными остатками. Белки HMG1 и HMG2 ассоциированы с нуклеосомой [29]. Они стабилизируют двойную спираль ДНК, поскольку при ассоциации с ними ее Тm увеличивается на 20 °C [382, 383]. Таким образом, имеются достаточные основания полагать, что белки HMG играют в хроматине структурную роль. При воздействии ДНКазы I на активную часть хроматина белки HMG удаляются. По-видимому, эти белки связаны с нуклеосомами [326]. Дефер и др. [98] также сообщают, что НГБ связаны с нуклеосомами. Существуют экспериментальные доказательства структурной роли некоторых НГБ [7, 8]. Метафазные хромосомы клеток HeLa сохраняют свою морфологию даже после того, как удалены все гистоны и большинство НГБ. Структура поддерживается лишь с помощью ~30 % НГБ, причем в их число входит около 30 типов НГБ с мол. массой ~75000. Каждая хроматида находится в спаренном состоянии, как в метафазе, и остается стабильной даже в 2 М NaCl. Установлено также, что после удаления гистонов из метафазных хромосом их общий размер уменьшается на 50 %, и это не приводит к заметным нарушениям в их морфологии [175]. Отсюда следует, что НГБ ответственны за поддержание метафазной структуры хромосом, а, возможно, также и структур других фаз клеточного цикла. Есть сообщения [44, 265], что НГБ участвуют в процессе закручивания ДНК в сверхспираль и в образовании структуры хроматина высшего порядка. В связи с этим было высказано предположение, что НГБ образуют "строительные леса", или каркас, определяя таким образом основную форму метафазной хромосомы, и в соответствии с этим каркасом ДНК сворачивается в петли.

НГБ очень неоднородны, число их велико, и некоторые из них ткане- и видоспецифичны. Общее содержание НГБ в разных тканях соответствует следующему ряду: мозг>печень>>почки>>селезенка>тимус [255]. Некоторые НГБ специфичны для каждой ткани, а относительные количества индивидуальных НГБ варьируют от ткани к ткани. Они претерпевают количественные и качественные изменения при различных физиологических условиях, а также в процессе эмбриогенеза, дифференцировки клеток и клеточного цикла. Некоторые НГБ слабо связаны с ДНК и легко экстрагируются, другие связаны сильнее. Благодаря своим свойствам они участвуют в регуляции экспрессии генов в целом [202, 285, 325, 332, 347] и в контроле транскрипции в частности [27, 186, 193]. Показано [347], что фракция НГБ из печени крысы стимулирует транскрипцию in vitro. Когда НГБ добавляют к хроматину эмбриона морского ежа, увеличивается число участков инициации синтеза РНК [245]. Аналогичные наблюдения сделаны на клетках асцитного рака Эрлиха: фракция слабо связанных НГБ избирательно ассоциирует с гомологичной ДНК и стимулирует транскрипцию специфических структурных генов в присутствии РНК-полимеразы эукариот [202, 203]. Удалось идентифицировать [203] фосфорилированный НГБ с мол. массой 11000, который ингибирует инициацию транскрипции и играет регуляторную роль в экспрессии генов. Сообщалось также об участии в регуляции специфической активности генов сильно связанных НГБ [40, 82]. Катино и др. [73] изолировали НГБ с мол. массой 31000, который в большом количестве содержится в неделящихся клетках, но в малом количестве — в делящихся, как, например, в гепатоме Новикова. Когда НГБ выделяли из хроматина с помощью 5 М мочевины (М0), смеси 5 М мочевины и 1 М NaCl (M1) и смеси 5 М мочевины и 3 М NaCl (M3) и изучали роль каждой полученной фракции в транскрипции комплекса ДНК — гистон из печени кролика, оказалось, что функции этих трех фракций различны [30]. Фракция М0 стимулирует транскрипцию, связываясь с хроматином и изменяя общую конформацию комплекса ДНК — гистон. Фракция М3 связывается более специфическим образом и раскрывает новые центры для связывания РНК-полимеразы. Фракция M1 включает, по-видимому, структурные компоненты хроматина.

Метаболически более активные клетки содержат большее число НГБ. Обычно НГБ локализованы в тех областях хроматина, которые более активны в процессе синтеза РНК [90, 376]. НГБ способны прекращать репрессию матричной активности, вызываемую гистонами [110, 319]. Некоторые фосфорилированные НГБ специфически взаимодействуют с гистонами Н1 и Н2В и поэтому могут удалять их и открывать участки ДНК для транскрипции [247]. НГБ способны переводить неактивные покоящиеся клетки, находящиеся в фазе G0, в активно растущие в стадии G1. В процессе этого перехода происходит синтез специфических типов НГБ и одновременно увеличивается матричная активность [158, 222, 305]. Отсюда был сделан вывод, что эти белки участвуют в дерепрессии или в положительной регуляции экспрессии генов, особенно в контроле транскрипции в течение клеточного цикла.

Поделиться:
Популярные книги

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Рухнувший мир

Vector
2. Студент
Фантастика:
фэнтези
5.25
рейтинг книги
Рухнувший мир

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4