Большая энциклопедия техники
Шрифт:
Для исследования определенных деталей глазного дна пользуются офтальмоскопией в обратном и прямом виде. В первом случае исследования производят с использованием обычного офтальмоскопа, а также двояковогнутой линзы 13,0 D, которую помещают перед глазом исследуемого на расстоянии 7,7 см. В итоге лучи, которые идут от источника света, отражаются от зеркала, попадают в глаз исследуемого и вторично отражаются от освещенного участка глазного дна, после чего проходят через лупу, преломляются в ней, тем самым давая по законам физики между лупой и глазом исследователя действительно увеличенное и обратное изображение глазного дна, которое наблюдает исследователь через отверстие в самом офтальмоскопе. В итоге данного исследования у больного должна наблюдаться нормальная картина глазного дна, если обнаруживаются отклонения от норм, то это свидетельствует о
Офтальмоскопия в прямом виде основана на законе сопряженных фокусов. Получив при помощи офтальмоскопа красный рефлекс с глазного дна, исследователь приближает свой глаз к глазу больного, добиваясь за счет этого ясного изображения глазного дна, другими словами, исследователь старается расположить свой глаз в сопряженном фокусе, в котором отразятся лучи от глазного дна исследуемого глаза.
При этом очень важно, чтобы преломляющая способность оптических систем глаза у исследуемого и исследователя была одинаковой. Это может быть достигнуто также при помощи оптических стекол, которые вставлены в диск, помещенный за отверстием рефракционного офтальмоскопа. При подобном исследовании получается прямое, мнимое и увеличенное в 15—16 раз изображение, что позволяет хорошо видеть детали глазного дна и определяет ценность данного метода.
Таким образом, за счет офтальмоскопа существует возможность оценить изменения сетчатки, зрительного нерва, сосудистой оболочки. Именно за счет этого офтальмоскопия глазного дна важна не только при заболеваниях глаза, но и при неврологическом исследовании, при заболевании сердечно-сосудистой системы, гипертонической болезни и др.
В современной технике применяют как обычные офтальмоскопы, так и усовершенствованные модели данного прибора, такие как электроофтальмоскоп – это, по сути, офтальмоскоп, в рукоятку которого вмонтирована яркая лампочка, являющаяся источником света.
Рентгеновская камера
Рентгеновская камера – прибор исследования атомной структуры в рентгеновском структурном анализе. Способ основан на дифракции рентгеновских лучей и ее отображении на фотопленке. Появление этого прибора стало возможным только после того, как немецкий ученый В. К. Рентген в 1895 г. открыл излучение, которое теперь называется рентгеновскими лучами, и изобрел рентгеновскую трубку. Принципиальная конструкция этой трубки сохранена и в современных рентгеновских приборах.
Рентгеновская трубка – это электровакуумный прибор, источник рентгеновского излучения. Ее конструкция состоит из металлического анодного стакана, стеклянной колбы, катода и анода, электростатической системы фокусировки электронов, окна для прохода рентгеновского излучения. Рентгеновские трубки применяются в различных приборах, имеющих разное исследовательское назначение.
Рентгеновская трубка для структурного анализа – это источник рентгеновского излучения для рентгеновской камеры. Рентгеновские камеры различаются по своей конструкции в зависимости от объекта исследований. Бывают рентгеновские камеры, исследующие монокристаллы и поликристаллы, производящие малоугловые рентгенограммы, а также используемые в рентгеновской топографии. Но конструкция любой рентгеновской камеры состоит из коллиматора, кассеты с фотопленкой, приспособления, на которое устанавливается исследуемый образец, и механизма движения этого образца. Коллиматор представляет собой цилиндрическую поверхность, на которой расположена целая система отверстий, щелей, определяющих расходимость и направление пучка первичного излучения (совместно с фокусом рентгеновской трубки). Но в некоторых конструкциях рентгеновских камер вместо коллиматора используются кристаллмонохроматор или поглощающие фильтры для выделения в пучке первичного излучения рентгеновского излучения с заданной длиной волны.
Приспособление, на котором устанавливается и закрепляется в держателе образец, сообщает образцу начальное положение относительно пучка первичного излучения и выводит образец на ось вращения – центрирует его. В рентгеновских камерах, исследующих монокристаллы, образец закрепляется на гониометрической головке. Гониометрическая головка – это механизм центровки образца, на котором взаимно перпендикулярно расположены две дуговые направляющие. В рентгеновской камере для рентгеновской топографии устройство, на котором закреплен образец, способно перемещаться вместе с фотопленкой. Кассета рентгеновской камеры, как правило, имеет плоскую или цилиндрическую форму. Она сообщает эту форму фотопленке
Рентгеновский аппарат
Рентгеновский аппарат – это прибор, предназначенный для исследования (рентгенодиагностика) и лечения болезней (рентгенотерапия) при помощи рентгеновских лучей.
Дисциплина, которая занимается рентгенодиагностикой и рентгенотерапией, называется медицинской рентгенологией. По сути данная дисциплина представляет собой обширную науку, которая основана на физических и биологических законах, обладает специальной методикой и техникой, опирается на многочисленные клинические наблюдения и экспериментальные исследования. Таким образом, роль медицинской рентгенологии в современной клинике весьма велика.
Основной аппаратурой медицинской рентгенологии является рентгеновский аппарат (трубка). В настоящее время в общем употреблении применяются электронные трубки, в которых воздух удален полностью, а поток электронов при этом создается путем накаливания вольфрамовой проволоки в катоде.
За счет повышения или понижения накала катода можно осуществлять увеличение или же уменьшение количества электронов и тем самым регулировать силу тока, которая проходит через трубку. Изменением напряжения на полюсах трубки регулируется скорость полета электронов, а как следствие, и жесткость получаемых лучей. Таким образом, эти два важнейших фактора – качество и количество излучения – регулируются независимо друг от друга.
По своей конструкции рентгеновский аппарат включает следующие основные компоненты: сама трубка, в которой находятся фиксирующий стаканчик и нить накала; вольфрамовое зеркало; антикатод и канал для охлаждающей воды. Еще при помощи специальной чашечки особой формы на катоде пучок электронов направляется на антикатод, состоящий из металла, который быстро раскаляется и неминуемо расплавился бы, если бы не было приспособления для охлаждения.
Данное приспособление для охлаждения может быть построено в форме столба воды, который соприкасается с антикатодом, или в форме толстого стержня из теплоемкого металла, отводящего тепло наружу. От размера и формы фокуса зависит резкость изображения на снимке или на экране.
Рентгеновская трубка распространяет лучи по всем направлениям, но все же максимально сильное излучение идет в одном определенном направлении от антикатода, причем оно еще называется направлением центрального луча.
Пластинке антикатода придается такой наклон, чтобы центральный луч при этом шел перпендикулярно к оси трубки. Таким образом, для уменьшения опасности для персонала рентгеновского кабинета и устранения излишнего количества лучей рентгеновскую трубку помещают в особый непроницаемый для излучения колпак с узким отверстием для выхода необходимого пучка лучей.