Большая Советская Энциклопедия (ПО)
Шрифт:
Для одноосно ориентированных полимеров характерна высокая прочность при растяжении в сочетании со способностью обратимо растягиваться в направлении оси ориентации. Эти свойства реализуются главным образом в кристаллизующихся полимерах (например, в полиолефинах), которые применяют в виде волокон и плёнок.
Помимо «искусственно» ориентированных полимеров, широко распространены биологические одноосно ориентированные полимерные объекты (растительные волокна, паутина, шёлковые нити, волосы, сухожилия, мышечная ткань и др.).
Полимеры
Полиме'ры (от греч. polymeres — состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы ) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных
Классификация . По происхождению П. делятся на природные (биополимеры ), например белки , нуклеиновые кислоты , смолы природные , и синтетические, например полиэтилен , полипропилен , феноло-формальдегидные смолы . Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные П., например каучук натуральный ); цепи с разветвлением (разветвленные П., например амилопектин ); трёхмерной сетки (сшитые П., например отверждённые эпоксидные смолы ). П., молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид , поликапроамид , целлюлоза .
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, П. называются стереорегулярными (см. Стереорегулярные полимеры ).
П., макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры ).
П., в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи П. делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных П. наиболее распространены карбоцепные П., главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат , политетрафторэтилен . Примеры гетероцепных П. — полиэфиры (полиэтилентерефталат , поликарбонаты и др.), полиамиды , мочевино-формальдегидные смолы , белки, некоторые кремнийорганические полимеры . П., макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры ). Отдельную группу П. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры ).
Свойства и важнейшие характеристики . Линейные П. обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см. Полимеров ориентированное состояние ); способность к большим, длительно развивающимся обратимым деформациям (см. Высокоэластическое состояние ); способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров , Набухание ). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые П. нерастворимы, неплавки и неспособны к высокоэластическим деформациям.
П. могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических П. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) П. менее выражены, чем в кристаллических.
Незакристаллизованные П. могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. П. с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства П. могут меняться в очень широких пределах. Так, 1,4– цис- полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С — эластичный материал, который при температуре — 60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 °С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 °С. Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
П. могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи ; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров ); реакции боковых функциональных групп П. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата , приводящее к образованию поливинилового спирта . Скорость реакций П. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу П. Наиболее явно это проявляется в случае сшитых П. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства П., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный П. из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1—2 поперечные связи.
Важнейшие характеристики П. — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства П. существенно зависят от этих характеристик.
Получение . Природные П. образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические П. получают полимеризацией и поликонденсацией . Карбоцепные П. обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные П. получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С o N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).
Применение . Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из П. применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов — пластические массы , резины , волокна (см. Волокна текстильные , Волокна химические ), лаки , краски , клеи , ионообменные смолы . Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.