Большая Советская Энциклопедия (ВЕ)
Шрифт:
для плоского поля координаты градиента равны
Градиент скалярного поля представляет собой векторное поле.
Для характеристики векторных полей вводится целый ряд понятий: векторной линии, векторной трубки, циркуляции векторного поля, дивергенции и вихря (ротора) векторного поля. Пусть в некоторой области W задано векторное поле посредством векторной функции а (М ) переменной точки М из W . Линия L в области W называется векторной линией, если вектор касательной в каждой её точке М направлен по вектору а (М ) (рис. 8 ).
Пусть АВ — некоторая гладкая линия в W , l — длина дуги АВ, отсчитываемая от точки А до переменной точки М этой линии, t — единичный вектор касательной к АВ в М. Циркуляцией поля а (М ) вдоль кривой АВ называется выражение
Если b (M ) — силовое поле, то циркуляция а вдоль АВ представляет собой работу этого поля вдоль пути АВ.
Дивергенция векторного поля а (М ), имеющего в базисе i, j, k координаты Р, Q, R , определяется как сумма
и обозначается символом div а . Например, дивергенция гравитация поля, создаваемого некоторым распределением масс, равна плотности (объёмной) r (х, у, z ) этого поля, умноженной на 4p.
Вихрь (или ротор) векторного поля а (М ) представляет собой векторную характеристику «вращательной составляющей» этого поля. Вихрь поля а обозначается rot а . Если Р, Q, R— координаты а в базисе i, j, k , то
Пусть поле a есть поле скоростей потока жидкости. Поместим в данной точке потока малое колесико с лопастями и ориентируем его ось по направлению rot а в этой точке. Тогда скорость потока будет максимальной, а её значение будет равно
Градиент скалярного поля, дивергенция и вихрь векторного поля обычно называют основными дифференциальными операциями векторного анализа. Справедливы следующие формулы, связывающие эти операции:
grad (fh ) = f grad h + h grad f,
div (fa ) = (a , grad f ) + f div a ,
rot (fa ) = f rot a + [grad f, a ],
div [a , b ] = (b , rot a )– (a , rot b ).
Векторное поле а (М ) называется потенциальным, если это поле представляет собой градиент некоторого скалярного поля f (M ). При этом поле f (M ) называется потенциалом векторного поля а . Для того чтобы поле а , координаты которого Р, Q, R имеют непрерывные частные производные, было потенциальным, необходимо и достаточно обращение в нуль вихря этого поля. Если в односвязной области W задано потенциальное поле а (М ), то потенциал f (M ) этого поля может быть найден по формуле
в которой AM — любая гладкая кривая, соединяющая фиксированную точку А из W с точкой М , t — единичный вектор касательной кривой AM и l — длина дуги AM, отсчитываемая от точки А.
Векторное поле а (М ) называется соленоидальным, или трубчатым, если это поле представляет собой вихрь некоторого поля b (M ). Поле b (M ) называется векторным потенциалом поля a . Для того чтобы а было соленоидальным, необходимо и достаточно обращение в нуль дивергенции этого поля. В векторном анализе важную роль играют интегральные соотношения: Остроградского формула , именуемая также основной формулой векторного анализа, и Стокса формула . Пусть V — область, граница Г которой состоит из конечного числа кусков гладких поверхностей, n — единичный вектор внешней нормали к Г . Пусть в области V задано такое векторное поле а (М ), что div а представляет собой непрерывную функцию. Тогда справедливо соотношение
называемое формулой Остроградского.
Если a — поле скоростей установившегося потока несжимаемой жидкости, то (a , n ) ds — объём жидкости, протекающей в единицу времени через площадку ds на границе Г . Поэтому правая часть формулы (1) представляет собой поток жидкости через границу Г тела V в единицу времени. Так как в рассматриваемом случае div а характеризует интенсивность источников жидкости, то формула Остроградского выражает следующий наглядный факт: поток жидкости через замкнутую поверхность Г равен количеству жидкости, порождаемой всеми источниками, расположенными внутри Г. Пусть в области W задано непрерывное и дифференцируемое векторное поле а , имеющее непрерывный вихрь rot а . Пусть Г — ориентируемая поверхность, состоящая из конечного числа кусков гладких поверхностей, n — единичный вектор нормали к Г , t — единичный вектор касательной к краю g поверхности Г , l — длина дуги g. Справедливо следующее соотношение
называемое формулой Стокса. Формула (2) выражает следующий физический факт: поток вихря векторного поля а через поверхность Г равен циркуляции этого поля вдоль кривой g. Формула Остроградского служит источником инвариантного (независящего от выбора системы координат) определения основных операций векторного анализа. Например, из этой формулы вытекает, что