Борьба со старением, или Не все мы умрем…
Шрифт:
В молодости длина теломер у человека составляет около 15 тыс. пар нуклеотидов. При каждом делении клетки длина теломер сокращается. Это объясняется тем, что ДНК-полимераза, копирующая ДНК при делении, первоначально занимает часть теломеры, к которой первоначально прикрепляется. Поэтому она не может скопировать эту часть. Клетки перестают делиться при длине теломеры 2 тыс. пар нуклеотидов, когда ДНК-полимеразе уже не на чем первоначально закрепиться. Однако человек обычно умирает раньше, с длиной теломер 5–7 тыс. пар нуклеотидов. Тем не менее связь длины теломер со временем жизни очевидна и теломерная теория старения человека остаётся одной из наиболее популярных.
В ДНК есть ещё один тип фрагментов, вызывающих у геронтологов повышенный интерес. Это транспозоны, или «прыгающие гены», – участки ДНК, способные менять свое положение в молекуле (транспозицию).
Рис. 1.2.10. Хромосомные территории (вид с использованием микроскопа – сверху и схема – внизу)
«Прыгающие гены» считаются причиной около 100 различных заболеваний. Их активность усиливается с возрастом, что внушает подозрения в том, что они могут быть важными факторами старения. Основанную на этих подозрениях теорию старения мы рассмотрим в следующей части.
Итак, ДНК в хромосоме всегда находится в более или менее компактной форме. Однако плотность укладки или степень конденсации ДНК неодинакова в различные периоды жизни клетки. Перед делением клетки конденсация ДНК, то есть плотность упаковки, значительно увеличивается. Клетка собирается перед самым ответственным моментом в своей жизни. В этот момент ДНК в хромосомах становится таким плотным, что их можно увидеть в обычный световой микроскоп. В период между делениями (в интерфазе) каждая хромосома занимает в ядре вполне определенную область (хромосомную территорию).
На рис. 1.2.10 видно (верхнее изображение), что хромосомные территории имеют нечеткие границы. Они имеют пористую границу, через которые проникают различные белки и матричная РНК. Отцовская и материнская хромосомы часто располагаются на отдаленных друг от друга территориях. Между хромосомными территориями расположены межхромосомные пространства, в которых располагаются группы ферментов, и активно идет работа генов: производится матричная РНК. Работающие гены находятся обычно в распутанном, деконденсированном состоянии и располагаются ближе к границам хромосомной территории.
В заключении этого раздела упомянем самую маленькую, но очень важную ядерную структуру – ядрышко. Оно не имеет мембраны и представляет собой сгусток белков (на 60 %) и нуклеотидов. В ДНК имеются гены, ответственные за образование специфической РНК для производства рибосом – рибосомных РНК или рРНК. Эти гены называют ядрышковыми организаторами [46] . Вблизи них располагаются ядрышки. Их число может меняться в зависимости от типа клетки, но обычно их довольно много (сотни). Основная функция ядрышек – производство рибосом, важнейших органелл, синтезирующих белки.
46
У человека ядрышковые организаторы располагаются в коротких плечах 13, 14, 15, 21 и 22 хромосом.
Как и всё в клетке, ядрышки – динамичные структуры. При начале деления клеток и конденсации (упаковке, уплотнении) хромосом они исчезают, поскольку работа генов прекращается. После деления они возникают, растут, могут сливаться друг с другом. Они могут перемещаться в межхромосомное пространство, структура которого, так же как и границы хромосомных территорий, весьма подвижна и динамична.
1.2.4. Как поддерживаются форма и структура клетки, ее энергообеспечение и управление внутриклеточными процессами
Как мы уже говорили, клетка напоминает медузу с гибкой оболочкой, наполненной цитоплазмой. Оболочка клетки – чрезвычайно сложная структура, состоящая из двух слоев жиров (липидов), погруженных в них белков, а также расположенных с внешней стороны клетки рецепторов.
Рис. 1.2.11. Схема оболочки клетки
Как видно
47
Гидрофильность – от др. – греч. «гидро» – «вода» и «фил» – «любовь». Хвостики липидов гидрофобные, то есть отталкивают воду.
Другие молекулы могут проходить только при помощи трансмембранных белков, образующих контролируемые проходы в оболочке. Обычно прохождение таких молекул требует затрат энергии. Примером прохождения веществ от областей с меньшей концентрацией к областям с большей концентрацией, требующим потребления энергии, может служить калиево-натриевый насос, представляющий собой фермент Na+/K+– АТФ-аза. Этот фермент присоединяет с внутренней стороны мембраны три иона Na+. При помощи получаемой извне от молекулы АТФ энергии три иона Na+ переносятся на внешнюю сторону мембраны, где они отщепляются и присоединяется два иона К+. Один заряд лишний. Так возникает разность потенциалов между внешней и внутренней частью оболочки клетки. После этого фермент возвращается в исходную позицию, а ионы К+ оказываются на внутренней стороне мембраны. В результате постоянного действия калиево-натриевого насоса концентрация калия в наших клетках в 30 раз больше, чем в плазме крови, а концентрация натрия, наоборот, в 15 раз меньше, чем вовне. Na связывает воду, а K пытается вывести ее из клетки. Этот насос обеспечивает циркуляцию жидкости из межклеточного пространства в клетку и обратно. Вместе с ней циркулируют и питательные вещества внутрь клетки, а из клетки – продукты жизнедеятельности клетки. Работа калиево-натриевого насоса потребляет примерно треть всей энергии, расходуемой клеткой.
Рецепторы – белки, прикрепленные к внешней части мембраны, – служат для клетки органами чувств. Часто к белкам-рецепторам прикрепляются углеводы-сахара, наподобие антенн. К рецепторам могут прикрепляться различные молекулы, передающие сигнал, например гормоны. После связывания рецептор передает сигнал внутрь клетки.
К оболочке клетки в разных местах прикреплены сети трубочек и нитей, образующих цитосклелет (напомним, что цито – это «клетка» на латыни). По трубочкам и нитям осуществляется транспорт белков в пузырьках (везикулах [48] ). К сожалению, в молекулярной биологии множество иностранных слов, например нить называют филаментом. На русском всё можно объяснить проще, но иностранные термины уже прочно укоренились, и я их привожу, чтобы вы могли понимать специальную литературу.
48
Строго говоря, везикулы – это маленькие органеллы, в которых запасаются или транспортируются питательные вещества.
Итак, у клетки есть оболочка и скелет, как у человека, определяющий её форму. По нитям и трубочкам скелета буквально ходят, передвигая ножки, специальные молекулярные носильщики, которые в пузырьках транспортируют белки и другие полезные вещества к месту их использования. Его адрес четко указан в прикрепленной к пузырьку молекулярной метке. Простая и понятная модель.
Однако развитие науки идет по извилистым дорожкам, часто сворачивающим в самых неожиданных направлениях. Восхитительно красива и проста была планетарная модель атома Резерфорда! В центре атома, как всегда, ядро. Вокруг, подобно планетам, вращаются электроны. Но, как мы уже говорили и будем еще не раз говорить, жизнь гораздо сложнее. Электроны, вообще оказались не частицами, а сложными квантовыми объектами. И они вовсе не вращаются вокруг атомного ядра. Однако простая резерфордовская модель атома до сих пор служит для объяснения множества явлений не только инженерам, но и профессиональным физикам.