Чтение онлайн

на главную - закладки

Жанры

Борьба со старением, или Не все мы умрем…
Шрифт:

Каждая из 20 аминокислот кодируется тремя нуклеотидами – кодонами. Например, кодон GCU (гуанин – цитозин – урацил) кодирует аминокислоту аланин, а AAA (аланин – аланин – аланин) – лизин [39] . Получив команду в виде кодона, например AAA, специальная транспортная РНК (т-РНК) ищет в растворе цитоплазмы нужную аминокислоту, в нашем случае аланин, и транспортирует ее к рибосоме [40] . Рибосома обеспечивает присоединение аланина к уже синтезированной части белка. Фактически рибосома работает как молекулярная машина по сборке белков. Она транслирует код из четырех букв-нуклеотидов и белковый код из 20 аминокислот. Этот процесс называют трансляцией.

39

Разные

кодоны могут кодировать одну и ту же аминокислоту. Возможных кодонов 64, а аминокислот 20. Например, аланин кодируется не только GCU, но и GCU, GCA и GCG кодонами.

40

Каждая т-РНК может соединиться только с одной аминокислотой.

4. Из рибосомы в ЭПС выходит только что собранный белок. Обычно он проходит еще довольно длительный путь досборки и обработки. Каждая камера ЭПС имеет свой специфический набор ферментов, обеспечивающий строго определенные химические реакции. Белок из рибосомы проходит через определенную последовательность камер ЭПС, подобно тому как изделие проходит заводские цеха в процессе обработки. Для транспортировки по ЭПС и дальше по клетке белок обычно погружен в пузырек-везикулу, который «везет» по клеточным путям – трубочкам и нитям – специальный транспортный белок.

5. Белки образуются и обрабатываются в покрытой миллионами рибосом шероховатой ЭПС. В то же время для выполнения функций клетки и ее деления необходимы также полисахара и липиды (жиры). Они производятся из простых сахаров, жирных кислот и других элементов в гладкой ЭПС, которая по строению похожа на свою шероховатую коллегу.

6. После прохождения всех производственных процессов в ЭПС белок транспортируется в комплекс Гольджи (см. рис. 1.2.9). При этом белки имеют сигнальные химические метки (в виде олигосахаридов), которые «сообщают» комплексу Гольджи, что с ними делать. Комплекс Гольджи, подобно ЭПС, состоит из множества полостей, которые из-за их формы принято называть цистернами, пузырьков, канальцев и трубочек. Сюда в пузырьках-везикулах транспортируются белки из шероховатой ЭПС и липиды и полисахара из гладкой ЭПС. Здесь белки, жиры и сахара взаимодействуют, белки модифицируются и готовятся к транспортировке в другие части клетки и в межклеточное пространство. Если в функции клетки входит производство гормонов и других важных для всего организма веществ, комплекс Гольджи в них сильно развит и занимает больше места, чем в обычных клетках. В комплексе Гольджи белки проходят «контроль качества». Прошедшие контроль белки получают специальные метки из полисахаридов, которые одновременно указывают маршрут дальнейшей транспортировки. Белки, не соответствующие требованиям «контроля по качеству», отсортировываются и отправляются на утилизацию в специальные органеллы – лизосомы, которые формируются в этом же комплексе.

7. Лизосомы – маленькие органеллы (диаметром от 200 до 800 нм), содержащие набор ферментов, которые синтезируются на шероховатой ЭПС и перемещаются в аппарат Гольджи. Там происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи, собственно, и становятся лизосомами. Лизосома может содержать от 20 до 60 различных видов ферментов. В лизосомах негодные белки и другие вещества расщепляются и перевариваются в формы, пригодные для дальнейшего использования. Остатки выбрасываются из клетки или консервируются для хранения.

8. Наконец, большинство производственных процессов требует затрат энергии (всё как на обычном заводе). Источником энергии в клетке являются митохондрии, производящие молекулы АТФ, доставляющие энергию во все части клетки. Об этом мы подробно поговорим в следующих разделах этой главы.

Теперь мы представляем себе все наиболее важные внутриклеточные процессы. Общую схему взаимосвязей этих процессов необходимо запомнить.

Записанная в гене в кодах ДНК информация транскрибируется в коды РНК.

В рибосоме

информация транслируется из кодов РНК в белковый код аминокислот – синтезируется белок.

В ЭПС под действием ферментов белки обрабатываются и собираются.

В комплексе Гольджи белки модифицируются и сортируются.

Подходящие по качеству белки транспортируются в везикулах к месту назначения.

Бракованные белки утилизируются (перевариваются и расщепляются) в лизосомах, которые формируются в комплексе Гольджи.

Первые два выделенных положения настолько важны, что они получили почетное звание «Центральная догма молекулярной биологии».

На первый взгляд, идущие в клетке процессы очень похожи на производственные процессы на крупном заводе. Сначала в центре управления, которым в клетке является ядро, формируется план и техническое задание на изготовление изделия, затем она трансформируется (в клетке – транскрибируется) в техническую документацию и передается в цеха. Здесь изделие (в клетке – белок) собирается из подвозимых с других предприятий деталей (в клетке это происходит в рибосоме), потом еще в нескольких цехах проводится дополнительная обработка изделия (в клетке – в ЭПС), его упаковка и технический контроль (в клетке – в комплексе Гольджи). Забракованная часть продукции разбирается (в клетке – в лизосомах) и по возможности вновь используется в производственных процессах, а остатки, отходы производства выбрасываются (из клетки) в специально отведенные места (в межклеточное пространство).

К сожалению или к счастью, жизнь устроена намного сложнее простых схем. И это проявляется не только в клетке, но и в экономических системах.

Клетка представляет собой водный раствор белков и других органических веществ, ограниченный гибкой оболочкой и разграниченный внутри еще великим множеством оболочек-мембран на разнообразные камеры, цистерны, пузырьки и т. д. Как и в любом химическом растворе, белки и другие молекулы находятся в постоянном движении. Они со скоростью самолета пролетают микроскопические расстояния и сталкиваются друг с другом, молекулами воды, оболочек и органелл. Трубочки и нити, по которым транспортируются белки, постоянно разбираются и вновь строятся, уже в других направлениях. Камеры, цистерны и пузырьки то сливаются друг с другом, то вновь образуются. Всё в клетке движется и изменяется.

Если рассматривать клетку в соответствующем движению молекул масштабе времени (микросекунды), мы увидим только бурлящий раствор хаотически двигающихся и постоянно сталкивающихся объектов. Вспомните известное всем хаотичное броуновское движение. Точно так же в газе молекулы беспорядочно сталкиваются друг с другом и за этими столкновениями не угадывается никакой закономерности. Но стоит подняться на уровень выше, рассмотреть статистику, посмотреть на изменения статистических параметров, и выявятся простые и всем с детства знакомые газовые законы Гей-Люссака, Бойля-Мариотта и др.

Аналогично обстоят дела в экономических системах. При производстве любого сложного изделия, например автомобиля, детали и материалы приходят на завод со всего света. Если проследить за движением отдельных деталей, оно может показаться хаотическим. Поставщики могут довольно быстро меняться, и на карте поставок будут возникать и исчезать различные маршруты. На всё это накладываются кризисы, забастовки, отзывы бракованной продукции – в общем, беспорядок. Участвующие в экономической деятельности люди действуют в соответствии с собственными интересами и вроде бы совершенно свободны в своих действиях. Однако каждое утро большинство из них идет на довольно скучную работу, потом покупает еду, другие товары, и так изо дня в день. При этом, как это ни удивительно, почти всем людям (хотя бы в развитых странах) находится работа, кто-то производит для них нужные товары – и «так весь мир вертится» [41] . Экономисты считают, что порядок на хаотичном рынке наводит некая «невидимая рука» [42] .

41

Шекспир У. Гамлет.

42

Смит А. Исследование о природе и причинах богатства народов. 1776 г.

Поделиться:
Популярные книги

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Кремлевские звезды

Ромов Дмитрий
6. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кремлевские звезды

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб