Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
Поскольку интерферометр в тысячу раз длиннее твердотельной антенны, он также в тысячу раз менее чувствителен к «пинку», производимому процессом измерения. Эта нечувствительность означает, что интерферометрам не нужно избегать с помощью сложных в конструировании квантово-неразрушающих датчиков [106] .
Если у интерферометров столько больших преимуществ перед твердотельными детекторами (гораздо большая полоса частот и гораздо лучшая чувствительность), почему же Брагинский, Вебер и другие не делали интерферометры? Когда я спросил об этом в середине 1970-х Брагинского, он ответил, что твердотельные детекторы просты, а интерферометры пугающе сложны. Маленькая сплоченная команда, такая как у него была в Москве, имела некоторый шанс сделать хорошо работающую твердотельную антенну и открыть гравитационные волны. Однако для разработки, отладки и успешной работы интерферометрического детектора требовалась гигантская команда и огромное количество денег. И даже при наличии такой гигантской команды и при таких огромных вложениях Брагинский сомневался в конечном успехе создания столь сложного детектора.
106
Прогресс
Десятью годами позже, когда накопилось достаточно свидетельств тому, что твердотельные детекторы не смогут достичь чувствительности 10– 21, Брагинский посетил Калтех и был потрясен прогрессом, достигнутым с интерферометром командой Дривера. Он пришел к выводу, что, в конечном счете, с помощью интерферометров можно будет добиться успеха. Но огромная команда и большие денежные затраты были не для него, поэтому, вернувшись в Москву, он перенаправил большую часть работы своей команды на другие направления, далекие от детектирования гравитационных волн [107] . (В других лабораториях в мире твердотельные антенны продолжали строить, и это очень хорошо, поскольку они дешевы по сравнению с интерферометрами, пока еще более чувствительны [108] и в долговременной перспективе могут сыграть свою роль на более высоких частотах.)
107
Через некоторое время команда Брагинского снова вернулась в эту область, когда стало ясно, что даже гигантских усилий Калтеха и финансов Национального научного фонда США недостаточно для решения всех множащихся сложных проблем, встающих в процессе разработки и разворачивания полномасштабных гравитационных антенн. Была образована международная научная коллаборация LIGO (LIGO Scientific Collaboration) для координации усилий всех научных коллективов, работающих в этой области.
Московская группа под руководством член-корреспондента Российской академии наук В.Б. Брагинского внесла большой вклад в решение ряда важных задач в проекте (совершенствование подвеса пробных масс, исследование механических шумов, разработка новых методов квантово-неразрушающих измерений). Кроме того, это сотрудничество помогло научной группе выжить в трудные для отечественной науки годы. См. также примечание самого К.Торна далее. [Прим, ред.]
108
Сейчас, в 2005 г., после запуска двух 4-км антенн LIGO в США, 3-км антенны VIRGO в Италии, 600-метровой GEO в Германии и 300-метровой ТАМ А в Японии это уже не так, и сравнение получается явно не в пользу детекторов на болванках. [Прим, ред.]
* * *
В чем состоит сложность интерферометрических детекторов? Ведь основная идея, описанная на рис. 10.6, выглядит довольно просто.
На самом деле рис. 10.6 является чрезмерным упрощением, поскольку игнорирует огромное количество возникающих препятствий. Трюки, к которым приходится прибегать, для того чтобы их обойти, делают интерферометр чрезвычайно сложным инструментом. Например, лазерный луч должен быть нацелен точно в нужном направлении, иметь точно нужную форму и частоту, чтобы идеально согласовываться с интерферометром, а его мощность и частота не должны флуктуировать. После того как луч расщепляется на два, эти два луча должны бегать в плечах интерферометра не просто туда и обратно, как на рис. 10.6, а многократно, чтобы увеличить чувствительность к движениям масс, а после этих многократных отражений они должны точно встретиться опять на делителе. За каждой массой надо постоянно следить, чтобы ее зеркала были все время направлены в нужном направлении и не отклонялись из-за колебаний пола, и это нужно делать так, чтобы не замаскировать действие гравитационных волн. Чтобы достичь идеальной работы этих и многих-многих других составляющих, требуется постоянное одновременное слежение за многими разными частями интерферометра и его лазерными лучами и постоянное приложение сил обратной связи, поддерживающих идеальный режим.
Некоторое представление о сложности интерферометра можно получить по фотографии (рис. 10.7) 40-метрового прототипа интерферометрического детектора, который построили в Калтехе Дривер и его команда — прототипа, который сам по себе гораздо проще, чем полномасштабный многокилометровый интерферометр, требуемый для достижения успеха.
* * *
В начале 1980-х четыре команды физиков-экспериментаторов трудились над разработкой инструментария и техники интерферометрических детекторов: команда Дривера в Калтехе, команда, которую он основал в Глазго (теперь руководимая Джимом Хафом), команда Райнера Вайса в MIT и команда, основанная Гансом Биллингом в Институте Макса Планка под Мюнхеном, в Германии. Это были маленькие и сплоченные команды, работающие более или менее независимо [109] , исповедующие свои собственные подходы к конструированию интерферометрических детекторов. В каждой команде отдельные ученые имели свободу в разработке и воплощении по собственному усмотрению новых идей, координация была очень незначительна. Это как раз тот тип работы, который нравится таким креативным ученым, как Брагинский, и та культура, в которой счастливее всего чувствуют себя такие одиночки, как я. Но это не та культура,
109
Хотя через Дривера поддерживалась тесная связь между командами Глазго и Калтеха.
10.7. 40-метровый прототип интерферометрического гравитационно-волнового детектора, построенный в Калтехе (около 1989 г.). Стол впереди и передняя, заключенная в сетку вакуумная камера содержат лазеры и компоненты для подготовки лазерного луча к попаданию в интерферометр. Центральная масса также располагается во второй, закрытой сеткой вакуумной камере, над которой можно заметить свешивающуюся веревку от блока. Крайние массы находятся на удалении 40 метров в конце двух коридоров. Два луча плечей интерферометра проходят внутри толстых труб, которые тянутся на всю длину коридоров. [Предоставлено проектом LIGO, Калифорнийский технологический институт]
Для детальной разработки многих сложных частей такого интерферометра, для того чтобы соединить их все и добиться правильной совместной работы, чтобы держать под контролем затраты проекта и добиться его завершения в разумные сроки, нужна была совсем другая культура — культура плотной координации работы подгрупп в рамках каждой команды, с фокусированием каждой команды на четко определенных задачах, с единым руководителем, принимающим решения о том, что и кому нужно делать в первую очередь.
Путь от независимости и свободы к тесной координации является болезненным. Таким путем, сопровождаемым в процессе мучительными стонами, движется биологическое сообщество, расшифровывающее геном. И мы, гравитационно-волновые физики, следуем по этому пути с не меньшей болью и страданиями с 1984 г. Я, однако, уверен, что волнения, радость и научная отдача от детектирования гравитационных волн и дешифровки их симфоний когда-нибудь сотрут из нашей памяти все пережитые страдания и боль.
Первым резким поворотом на нашем болезненном пути был вынужденный союз почти под дулом пистолета команд Калтеха и MIT, каждая из которых состояла к тому времени примерно из 8 человек. Держал пистолет и требовал Ричард Айзексон из Национального научного фонда (NSF) США. Брак, в котором Калтех и MIT должны были вместе разрабатывать интерферометр, был платой за финансовую поддержку на деньги налогоплательщиков. Дривер (бешено сопротивлявшийся) и Вайс (с готовностью принявший неизбежность) принесли свои клятвы, а я стал советником этого союза, человеком, чьи обязанности заключались в том, чтобы искать компромисс, когда Дривер тянул в одном направлении, а Вайс — в другом. Это был тернистый союз, эмоционально истощающий всех, но постепенно мы стали работать вместе.
Второй резкий поворот произошел в ноябре 1986 г. Комитет, состоящий из выдающихся физиков-специалистов в тех областях технологии, которые нами использовались, и экспертов по организации и менеджменту больших научных проектов, скрупулезно изучил наши достижения и планы и доложил о них NSF. Наш прогресс был высоко оценен, высокой оценки заслужили также наши планы и перспективы на успех в детектировании и расшифровке гравитационных волн. Однако наша культура работы была признана ужасной, мы все еще были тесно привязаны к свободолюбивой культуре, в которой родились, а таким образом мы никогда не смогли бы добиться успеха — такое решение было доложено NSF. Тройка Дривер — Вайс — Торн должна была быть по решению комитета заменена единственным директором, который бы спаял талантливых индивидуалов в сплоченную и эффективную команду и мог бы организовать проект, принимая твердые и мудрые решения на каждой крупной развилке.
Опять появилось дуло пистолета. Если вы хотите, чтобы проект продолжался, сообщил нам Айзексон из NSF, вы должны найти такого директора и учиться работать с ним так же, как футбольная команда работает с великим тренером или как оркестр с великим дирижером.
Нам повезло. В середине нашего поиска был уволен Робби Вогт.
Часть ученых из команд Калтех/МГТ, работавших над проектом LIGO в конце 1991 года. Слева: некоторые члены команды Калтеха, против часовой стрелки, начиная с правого верхнего угла: Аарон Гиллеспи, Фред Рааб, Мэгги Тейлор, Сейджи Кавамура, Робби Вогт, Рональд Дривер, Лайза Сивере, Алекс Абрамовичи, Боб Спиро, Майк Цукер. Справа: некоторые из членов команды М1Т, против часовой стрелки, начиная с верхнего правого угла: Джой Ковалик, Ярон Хефец, Нергиз Малвала, Райнер Вайс, Дэвид Шумейкер, Джой Джиайми. [Слева: предоставлено Кеном Роджерсом/Black Star; справа: предоставлено Эриком Л. Симмонсом]
Вогт — блестящий физик-экспериментатор, обладающий волевым характером. Он возглавлял проекты создания и управления научными приборами космических аппаратов, руководил созданием гигантского астрономического интерферометра миллиметрового диапазона и реорганизовал структуру научных исследований в Лаборатории реактивного движения (JPL) NASA, которая поддерживает большую часть исследовательских межпланетных космических программ США, а после этого стал проректором Калтеха. На этом посту Вогт, хотя и был чрезвычайно эффективен, постоянно сталкивался с президентом Калтеха Марвином Голдбергером в ожесточенных схватках по вопросам управления Калтеха. После нескольких лет битв Голдбергер его уволил. Вогт не мог по своему темпераменту работать под теми, с суждениями которых был в корне не согласен, но, будучи сверху, он был великолепен. Он был тем самым директором, дирижером и тренером, который нам был нужен. Если кто-то и мог спаять нас в сплоченную команду, то это был именно он.