Чтение онлайн

на главную

Жанры

Чудеса и катастрофы Вселенной
Шрифт:

Сначала ученые вводили в Солнечную систему невидимые массы, отклонявшие планеты с их курсов. Но это не помогло. И тогда были сделаны отчаянные попытки спасти закон тяготения Ньютона, модернизируя его формулу. Так что когда Эйнштейн создал частную теорию относительности и занялся теорией тяготения, это не было прихотью гения. Вопрос назрел.

Со времен Ньютона физики знали, что вес тела пропорционален его массе. Знали, что существуют два типа массы — тяготеющая и инертная. Тяготеющая масса — это масса, которую нужно подставить в закон всемирного тяготения, чтобы рассчитать силу тяжести. Инертная масса — это масса, которую нужно подставить во второй закон Ньютона, чтобы рассчитать ускорение движения тела под действием силы. Физики знали, что эти массы численно равны друг другу. Эйнштейн сделал шаг, который нам

сейчас может показаться маленьким. Но он произвел переворот в умах.

Помните, что сказал Н. Армстронг, ступив на поверхность Луны? «Это небольшой шаг для человека, но большой шаг для всего человечества». Вот эти-то «маленькие» шаги, преобразующие мир, сделать труднее всего. Эйнштейн был первым, кто твердо сказал: тяготеющая и инертная массы не просто численно равны, они — одно и то же. И это утверждение, названное принципом эквивалентности, послужило опорой для создания самой совершенной физической теории XX в. — общей теории относительности.

УСПЕШНОЕ ПРИМЕНЕНИЕ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Эйнштейн доказал, что перигелий Меркурия должен перемещаться именно на 43 угловые секунды в столетие. Кроме того, из общей теории относительности следовало, что луч света, который прежде считался движущимся только прямолинейно (в пустоте), должен отклоняться от своей прямой траектории в поле тяжести. Ведь фотон, квант света, — материальная частица, он также должен быть подчинен закону тяготения.

Никто не знал, чему равна масса фотона. Эйнштейн нашел, что фотон существует только в движении, он не может стоять на месте, потому что его масса покоя равна нулю. А из принципа эквивалентности следовало, что и энергия тела эквивалентна вполне определенной массе — вспомните знаменитую формулу Е=МС 2! И значит, луч света должен, как обыкновенный камень, двигаться в поле тяжести по кривой линии, которую можно рассчитать. Это следствие из теории тяготения в отличие от первого предстояло еще доказать на опыте. И третье следствие тоже. Заключалось третье следствие вот в чем. Если подбросить вверх камень, то он будет лететь все медленнее, его кинетическая энергия будет расходоваться на преодоление силы тяготения. В конце концов она истратится вся, камень на мгновение остановится и начнет падать.

Луч света, пущенный вверх, против поля тяжести, тоже должен разорвать путы тяготения, тоже должен, удаляясь от тяготеющего тела, терять свою энергию. Но тормозить движение фотон не может — ведь скорость света есть величина постоянная. Фотон в отличие от камня теряет энергию иначе — он «краснеет». Согласно теории квантов (тоже созданной Эйнштейном в 1905 г.), энергия фотона пропорциональна его частоте. Меньше энергия — меньше частота. Частота фотона — это его цвет. Значит, цвет луча света меняется. Из голубого луч становится красным, причем тем интенсивнее, чем более сильное поле тяжести ему приходится преодолевать. Этот эффект называется гравитационным красным смещением.

В 1919 г. Эддингтон, наблюдая солнечное затмение, обнаружил, что звезды около затемненного Луной края солнечного диска сместились со своих мест. Это означало, что луч света от далекой звезды, проходя по пути к Земле рядом с Солнцем, отклонялся от прямолинейной траектории. Измеренный эффект смещения практически точно совпал с предсказанным.

КРАСНОЕ СМЕЩЕНИЕ

В СПЕКТРАХ КОСМИЧЕСКИХ ОБЪЕКТОВ

А пять лет спустя тот же Эддингтон объявил о том, что спектральные линии элементов в спектрах белых карликов должны быть смещены в красную сторону. Ведь белые карлики — самые компактные из звезд. Поле тяжести на их поверхности в миллион раз больше, чем на поверхности Земли. Значит, и красное смещение света, испущенного белым карликом, должно быть самым большим из возможных. Эддингтон вычислил, на сколько именно должны смещаться в красную сторону спектральные линии. В том же 1924 г. Адаме наблюдал спектры белого карлика Сириус-В и обнаружил предсказанное красное смещение — именно такое, какое следовало из теории.

Размер белого карлика —10 тысяч километров, и в нем уже проявляются эффекты общей теории относительности. Оказывается, без них нельзя точно рассчитать ни предельную массу белого карлика, ни смещение линий в его спектре. Что же тогда говорить о нейтронной звезде, размер которой, если верить предсказаниям Цвикки, еще в сотни раз меньше! Ведь и поле тяжести на поверхности нейтронной звезды должно быть в сотни раз больше. Значит, и эффекты общей теории относительности должны играть весьма существенную, а может, и вовсе определяющую роль.

Посмотрим, так ли это. Чем ближе скорость движения тела к скорости света, тем больше влияние эффектов теории относительности. Так и здесь. Характеристикой величины поля тяжести может служить вторая космическая скорость (скорость убегания). Чем больше сила тяжести, тем большую скорость должно иметь тело, чтобы улететь в космос. Чтобы навсегда покинуть Землю, нужно разогнаться до 11 км/с. Чтобы улететь с поверхности Солнца, нужно развить скорость 600 км/с. Чтобы разорвать путы тяжести белого карлика, нужна скорость 5 тысяч км/с. Все больше и больше! Заметьте, что в белом карлике эффекты общей теории относительности уже ощутимы. А чтобы покинуть нейтронную звезду, нужно разогнаться до скорости 100 тысяч км/с. Всего втрое меньше скорости света. Если бы размер нейтронной звезды был втрое меньше, то скорость убегания с ее поверхности сравнялась бы со скоростью света. Улететь с поверхности нейтронной звезды стало бы просто невозможно…

Впрочем, последнее рассуждение не имеет отношения к нейтронным звездам. Нейтронная звезда в принципе не может иметь таких маленьких размеров — позднее мы еще вернемся к этому. Но само рассуждение безупречно и пришло в голову английскому физику Дж. Мичеллу еще в XVIII в. Спустя несколько лет после Мичелла о том же писал и великий Лаплас. Конечно, они и понятия не имели о теории относительности. Это была прекрасная догадка, жемчужное зерно в куче ошибочных представлений того времени. Лаплас писал, что если свет распространяется не бесконечно быстро, то может найтись небесное тело, с поверхности которого свет не сможет улететь, потому что скорость убегания окажется больше световой. Такое тело невозможно обнаружить, потому что оно в принципе ничего не излучает.

Такими телами являются, например, гипотетические «адские звезды». Размеры у них должны быть меньше размеров атома, и это при массе, равной солнечной! Если бы такие звезды могли существовать, то скорость убегания с их поверхности превышала бы скорость света в миллионы раз. Но дело-то в том, что «адские звезды», согласно общей теории относительности, не могут в принципе существовать как стабильные объекты. Однако об этом тоже немного позже…

Эйнштейн завершил разработку своей теории гравитации в 1916 г. Он создал такие уравнения полей тяжести, которые сводились к обычному ньютоновому закону всемирного тяготения, если поля слабы. Но что значит слабы или сильны? Это лишь слова, а чтобы придать им физический смысл, нужно описать их каким-то числом. Скажем, так: если поле тяжести больше некоторого «икс», то оно считается сильным, а если меньше — то слабым. Таким пробным камнем для теории тяготения и стала проблема поля тяготения звезды.

В 1916 г. немецкий астроном К. Шварцшильд, прочитав только что опубликованную работу Эйнштейна, решил так преобразовать уравнения общей теории относительности, чтобы с их помощью можно было описать гравитационное поле звезды, т. е. поле тяжести вне некоторого сферического тела. Лишь бы только это тело не вращалось. Шварцшильд получил выражение для той критической величины, вблизи которой поле тяжести можно назвать сверхсильным. Случайно математическое выражение этой величины оказалось в точности таким, какое получил Лаплас для радиуса своей гипотетической невидимой звезды. И тогда выяснилась странная вещь. В уравнении оказалась, как говорят математики, сингулярность, то есть область, в которой поле тяжести обращается в бесконечность. В обычной ньютоновой формуле закона всемирного тяготения тоже есть сингулярность. Если расстояние между двумя телами равно нулю, то и в ньютоновой теории сила притяжения таких тел друг к другу равна бесконечности. Но эта сингулярность никому не мешает — в природе не может реализоваться случай, когда расстояние между телами точно равно нулю! А Шварцшильд в рамках общей теории относительности нашел, что сила тяжести становится бесконечно большой при конечном, не равном нулю расстоянии.

Поделиться:
Популярные книги

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Король Руси

Ланцов Михаил Алексеевич
2. Иван Московский
Фантастика:
альтернативная история
6.25
рейтинг книги
Король Руси

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода

Виконт. Книга 3. Знамена Легиона

Юллем Евгений
3. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Виконт. Книга 3. Знамена Легиона

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Вечный Данж V

Матисов Павел
5. Вечный Данж
Фантастика:
фэнтези
7.68
рейтинг книги
Вечный Данж V

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6