Десять великих идей науки. Как устроен наш мир.
Шрифт:
Закон сохраненияявляется утверждением, сообщающим о том, что ничто не меняется. Это может показаться самым неинтересным из возможных видов комментирования в науке. В действительности это, как правило, наиболее глубокий и наиболее содержательный тип научных законов, поскольку он дает интуитивное проникновение в симметрию — по существу, в форму — систем и даже в симметрии пространства и времени. Частным законом сохранения, следующим из третьего закона Ньютона, является закон сохранения импульса. В классической механике импульсом тела называется просто произведение его массы на его скорость:
Импульс = масса x скорость.
Из этого определения следует, что быстро летящее пушечное ядро имеет большой импульс,
Импульс есть направленная величина, в том смысле, что две частицы одинаковой массы, движущиеся с одинаковой скоростью, но в разных направлениях, имеют разные импульсы. Два бильярдных шара, катящиеся друг к другу по одной прямой с одинаковой скоростью, имеют равные, но противоположно направленные импульсы, а их общий импульс равен нулю. Когда они сталкиваются «лоб в лоб», они останавливаются, так что импульс каждого мгновенно обращается в нуль, а общий импульс после столкновения снова равен нулю. Мы видим в этом примере, что, хотя импульсы отдельных частиц меняются, общий импульс остается неизменным. Это заключение обобщается на все случаи: какие бы импульсы ни имели индивидуальные частицы первоначально, сумма этих моментов (с учетом различных направлений и величин импульсов) после взаимодействия частиц будет оставаться такой же, какой была прежде (рис. 3.3). Бильярд как таковой является игрой, основанной почти полностью на принципе сохранения импульса: каждое столкновение шаров между собой или шара с бортом подчиняется этому закону и порождает различные траектории движения по столу, зависящие от первоначального угла подхода.
Рис. 3.3.Столкновения и взаимодействия в целом сохраняют импульс в том смысле, что полный импульс после столкновения остается таким же, каким он был в начале. Здесь мы видим столкновение шара с группой шаров. Импульс ударного шара указан с помощью длины и направления стрелки слева. Этот импульс передается шести «красным» шарам, и их индивидуальные импульсы заданы длинами и направлениями стрелок справа. Если вы сложите эти стрелки «головой к хвосту», не меняя их ориентации, вы получите в результате длину и направление начальной стрелки.
Теперь мы можем совершить гигантский, но контролируемый прыжок из бильярдной во Вселенную. Забавно, что, поскольку импульс сохраняется в любом процессе, величина импульса Вселенной тоже должна быть фиксированной. Поэтому, когда вы выезжаете в своем автомобиле, пусть даже вы всего лишь набираете импульс при разгоне или меняете направление вашего импульса, поворачивая за угол, что-то где-то получает импульс так, чтобы общий импульс Вселенной не изменился. Когда вы выезжаете, вы действительно немного толкаете Землю в противоположном направлении: вы ускоряете движение Земли по орбите, если трогаетесь в одном направлении, и замедляете, если отбываете в другом направлении. Однако масса Земли столь велика в сравнении с массой вашего автомобиля, что этот эффект будет совершенно незаметен, как бы много покрышек вы ни спалили. Но он существует.
Я упомянул ранее, что закон сохранения является следствием симметрии, или окном в симметрию, или что-то в этом роде. Что-то в этом роде в данном случае есть само пространство, так как в конечном счете симметрия пространства ответственна за сохранение импульса. Симметрия пространства, форма пространства: что это может означать? В данном примере все это означает, что пространство не состоит из кусков. Если вы двигаетесь сквозь пустое пространство по прямой линии, оно остается в точности тем же самым: повсюду оно гладкое и неизменное. Сохранение импульса это как раз знак того, что пространство не является кусковатым, а третий закон Ньютона это способ высказать то же самое на «высоком уровне».
Существует еще одно следствие третьего закона Ньютона, другой закон сохранения, другое интуитивное проникновение в форму пространства. Мы обсуждали импульс, характеристику частицы, движущейся по прямой линии. Существует еще одно свойство, момент импульсаили момент количества движения, характеристика частицы, движущейся по кругу. Быстро вращающееся тяжелое маховое колесо имеет очень большой момент импульса, а медленно вращающееся колесо велосипеда имеет маленький момент импульса.
Момент импульса может быть передан от одного объекта другому, если первый объект прилагает ко второму вращающий момент, закручивающую силу, и отклик второго тела на этот вращающий момент зависит не только от его массы, но и от того, как эта масса распределена. Например, труднее разогнать колесо, если его масса сосредоточена в ободе, чем если та же масса расположена около оси. Вот почему в маховом колесе сталь сосредоточена около обода (рис. 3.4): такое распределение хорошо гасит изменения угловой скорости, а металл около оси менее эффективен и поэтому является излишним.
Рис. 3.4.Маховое колесо имеет значительную массу, сконцентрированную на большом расстоянии от его оси. Такое колесо требует большого вращающего момента (закручивающей силы), чтобы изменить свой момент импульса. В модели приводимого в движение паром тягового двигателя, показанной на иллюстрации, маховое колесо (верхнее из изображенных колес) помогает сохранять устойчивое движение поршня.
Если внешний вращающий момент к системе не прилагается, то момент импульса сохраняется. Предположим, что два вращающихся бильярдных шара соударяются на полированном столе; тогда момент импульса может быть передан от одного к другому и вращение одного может частично перейти к другому. Тем не менее момент импульса после столкновения остается таким же, каким он был первоначально: момент импульса сохраняется. То же верно и в целом: полный момент импульса семейства взаимодействующих частиц нельзя ни создать, ни уничтожить. Даже если вращающийся бильярдный шар замедляет движение из-за трения, момент импульса не теряется: он переходит к Земле. В результате Земля вращается немного быстрее (если бильярдный шар первоначально крутился в том же направлении, что и Земля) или немного медленнее (если шар вращался в противоположном направлении). Если вы едете в направлении вращения винта по северному полушарию, вы ускоряете вращение Земли, но замедляете его снова, если тормозите или останавливаетесь. Вселенная в целом, очевидно, имеет нулевой момент инерции, поскольку не существует никакого вращения Вселенной как целого. Таким он и будет оставаться всегда, поскольку мы не можем производить момент инерции; мы можем лишь переносить его от одного кусочка Вселенной к другому.
А что же говорит нам сохранение момента импульса о форме пространства? Поскольку момент импульса является характеристикой вращательного движения, мы можем подозревать, что его сохранение говорит нам, какую форму пространство имеет, когда мы вращаемся. Действительно, закон сохранения момента импульса показывает, что если мы движемся по кругу вокруг некоторой точки, то мы не обнаружим в пространстве никаких кусков. Сохранение импульса возникает из однородности пространства при движении по прямой линии; сохранение момента импульса возникает из однородности пространства при движении по кругу. Более технически выражаясь, сохранение импульса говорит нам о том, что пустое пространство гомогенно, а сохранение момента импульса говорит нам о том, что оно изотропно. Третий закон Ньютона сообщает нам то, что мы можем считать очевидным: это пространство однородно для нашего движения (пока на нас не действуют внешние силы или вращающие моменты). Однако тот факт, что этот закон имеет измеряемые следствия, означает, что наше умозрение в кресле о природе пространства открыто для экспериментальной проверки, и это замечательно.