Десять великих идей науки. Как устроен наш мир.
Шрифт:
Вы могли заметить, что энергияпока не играла роли в нашем обсуждении. Ньютон не использовал этот термин и умер за век до того, как Юнг предложил принять его. Его формулировка механики, при всей ее оригинальности и элегантности, была, по существу, физикой фермерского двора (или, точнее, физикой ледового катка), использующей почти буквально осязаемую концепцию силы. Вы и я, как мы думаем, точно знаем, что такое сила, поскольку мы знаем, когда мы прилагаем ее или испытываем ее действие. То, что Ньютон принял ее в качестве центральной концепции своей механики, и означает, что физика едва отъехала с фермерского двора. Как мы видели на примере Галилея, достижение прогресса в науке
Этому свету потребовалось полвека на то, чтобы осветить мир. В начале девятнадцатого века энергия еще была литературным термином; к середине века энергия оказалась в плену у физики. Ее окончательное принятие может быть датировано с определенной точностью, поскольку в 1846 г. Уильям Томсон (1824-1907, с 1892 г. лорд Кельвин) еще мог написать, что «физика есть наука о силе», но в 1851 г. он провозглашал, что «энергия есть первичный принцип». Этот переход был совершен в два этапа: сначала изучение движения частиц (включая частицы, которые мы считаем планетами), а затем изучение действия сложного собрания частиц, называемого паровым двигателем.
Для частиц рассвет начался серией из вспышек света в первые годы девятнадцатого столетия. Сначала, как мы видели, Томас Юнг предложил использовать термин энергиядля величины, получаемой умножением массы частицы на квадрат ее скорости. Эта энергия движения понималась как мера vis viva, или живой силы, и рассматривалась как разумная мера силы в событиях, происходящих в системе частиц. Парадоксально: чем больше живая сила у пушечного ядра, тем больше смертей и разрушений оно может произвести.
Определение энергии выражением масса x скорость 2, данное Юнгом, было не совсем правильным. Он пришел к своему предположению, рассматривая силу, которую движущийся объект прилагает к чему-нибудь при столкновении с ним, и понимая, хотя и не вполне четко, что сила, прилагаемая данным телом, возрастает в четыре раза, если скорость удваивается. Это верно, но численный множитель в выражении Юнга неправилен. Он осознал свою ошибку примерно в 1820 г., когда понял, что концепцию работы(которую мы обсудим ниже) можно скомбинировать со вторым законом Ньютона и вывести отсюда, что энергия, связанная с движением, лучше выражается половиной этой величины. Некоторое время эту величину называли актуальной энергией, но название быстро сменилось на кинетическую энергию, и этот термин используется теперь везде. Итак
Кинетическая энергия = 1/2 x масса x скорость 2.
Таким образом, быстро движущееся тяжелое тело имеет большую кинетическую энергию, в то время как медленно движущееся легкое тело имеет маленькую кинетическую энергию. Падающий шар приобретает кинетическую энергию, поскольку он ускоряется. В отличие от импульса, кинетическая энергия одинакова при любом направлении движения частицы: шар, двигающийся горизонтально с заданной скоростью, имеет одну и ту же кинетическую энергию независимо от направления движения, а его импульс различен для разных направлений.
«Работа», на которую мы ссылались, является решающей концепцией для изучения энергии и заслуживает немедленного разъяснения. Мы должны понимать, что то, что ученые имеют в виду под этим названием, не вполне то же самое, что повседневное значение слова «работа». В науке работасовершается, когда объект преодолевает силу, действующую в направлении, противоположном его движению. Чем дальше мы продвигаем объект, тем больше работа, которую нам приходится совершить. Чем больше противодействующая сила, тем больше работа, которую нам приходится совершить. Поднятие тяжелого объекта, движение против силы притяжения к Земле (противодействующей силы, поскольку она препятствует движению груза вверх) требует совершения большой работы. Поднятие со стола листа бумаги также требует работы, правда не очень большой. Поднятие того же объекта на такую же высоту на Луне, где притяжение меньше, требует совершения меньшей работы, чем на Земле.
Поднятие металлического блока с преодолением гравитационной силы представляет больший интерес, чем можно подумать. Сначала вообразим чурбан на катке, блок, который толкают по отполированной поверхности без трения. Блок ускоряется, пока мы продолжаем его толкать. В результате его кинетическая энергия будет возрастать от нуля вначале до той величины, которую мы изберем, или до того момента, когда мы упадем в изнеможении и перестанем прикладывать силу, а блок начнет ускользать от нас по льду с постоянной скоростью. Работа, которую мы проделали, превратилась в энергию, энергию движения. (Множитель 1/2 в выражении для кинетической энергии был введен для того, чтобы гарантировать, что две эти величины, работа и кинетическая энергия, равны.) Теперь мы можем обратить это рассуждение, допустив, что блок движется равномерно по нашему галилеевскому столу без трения и ударяется о некое хитроумное приспособление, способное преобразовать его движение в поднятие груза (рис. 3.5). Вся кинетическая энергия превращается в работу, в го же количество работы, которое мы затратили для первоначального разгона блока.
Рис. 3.5.Движение тела можно использовать для того, чтобы произвести работу, поэтому ему соответствует форма энергии, известная как кинетическая энергия. В данном примере шар ударяет по поршню, а движение поршня преобразуется с помощью ряда приспособлений в поднятие груза, представленного другим шаром. Работа, проделанная при поднятии второго шара (пропорциональная его весу и высоте, на которую шар поднят), равна кинетической энергии катящегося шара.
Эти наблюдения дают возможность ввести следующее определение: энергия есть способность произвести работу. Это и в самом деле все, чем она реально является. Где бы вы ни встретили термин энергия, использованный в техническом, а не в литературном смысле, он всегда означает способность произвести работу. Большое количество запасенной энергии (быстро движущаяся тяжелая масса) может в принципе произвести много работы, поднять тяжелый груз на большую высоту. Объект, обладающий лишь небольшим количеством энергии (медленно движущаяся легкая масса), может произвести лишь малое количество работы, поднять легкий груз лишь на маленькую высоту. При удвоении скорости объект учетверяет работу, для выполнения которой его можно запрячь.
Сделаем теперь следующий шаг. Предположим, что мы поднимаем груз на определенную высоту и прикрепляем его к системе блоков, которая может поднимать другой груз (рис. 3.6). Когда мы отпускаем первый груз, он поднимает второй. То есть он производит работу. Таким образом, первый груз имеет возможность произвести работу, даже несмотря на то, что вначале он был неподвижен. Это значит, что он обладает энергией. Эта форма энергии, которой частица обладает благодаря определенному положению, называется потенциальной энергией. Термин ввел в оборот в 1853 г. Уильям Макуорн Рэнкин (1820-72), один из основателей науки об энергии, которому предстоит снова появиться в этом повествовании.