Чтение онлайн

на главную - закладки

Жанры

Дневная звезда. Рассказ о нашем Солнце

Миттон Саймон

Шрифт:

Одним из самых больших современных солнечных телескопов является солнечный телескоп типа Мак-Мас Национальной обсерватории Китт-Пик, США, Аризона. Днем он используется для изучения Солнца, а ночью на нем можно производить некоторые звездные работы. На высокой 35-метровой башне укреплен гелиостат. Это следящее за Солнцем зеркало имеет диаметр 1,5 м, оно поворачивается вслед за Солнцем и отражает солнечный свет вниз вдоль оси телескопа. Главная ось телескопа параллельна оси вращения Земли. Фокусное расстояние равно 90 м, поэтому 3/5 телескопа расположены под поверхностью Земли. Большой фокус телескопа приводит к образованию большого изображения Солнца диаметром в 90 см. Это позволяет солнечным астрономам различать на поверхности Солнца многочисленные детали и их изменения день ото дня. Чтобы изображение Солнца было стабильным, воздух внутри телескопа охлаждается. Для этого по трубам, проложенным вдоль стен башни, пропускается холодная вода. На этом замечательном телескопе

«солнечники» могут детально исследовать магнитные поля, движение и состав атмосферы Солнца.

Солнечные башни имеются на ряде обсерваторий. В основном они похожи на солнечный телескоп обсерватории Кит-Пик, хотя конструкция основного туннеля обычно вертикальна, а не наклонна. В США такие башни имеются на обсерваториях Маунт Вилсон и Биг Бер. Обсерватория Биг Бер расположена посреди маленького горного озера. Такое место было выбрано потому, что наблюдения Солнца проводятся чаще всего около полудня, когда Солнце сильно нагревает окружающее пространство. В результате солнечное изображение из-за поднимающихся потоков теплого воздуха портится, замывается. Над большим пространством воды этот эффект намного слабее.

Солнце исследуется не только путем прямого фотографирования, но и при помощи исследования спектра излучения. Этим занимается солнечная спектроскопия. Солнечный спектр несет в себе важную информацию о температуре и составе внешних слоев Солнца. Примером солнечного спектра в природе является радуга, возникающая в результате отражения и преломления света Солнца в водяных каплях. Однако спектры радуги не столь совершенны, чтобы по ним можно было исследовать Солнце.

Первым серьезным спектроскопистом был самый выдающийся из кембриджских астрономов Исаак Ньютон. Научная работа Ньютона охватывала такие области, как математика, природа света, астрономия и гравитация. В конце своей жизни он был назначен на должность сначала хранителя, а потом и директора Королевского Монетного двора. В память об этом в Великобритании в 1978 г. была выпущена банкнота достоинством в один фунт, на оборотной стороне которой были перечислены (частично неверно) некоторые из научных достижений Ньютона, в частности его планетарная теория, работы в спектроскопии, создание отражательного телескопа. Ньютон провел многочисленные оптические опыты и показал, что призма расщепляет белый свет на различные цвета. В 1665 г. он произвел разложение солнечного света, поставив призму на пути узкого пучка света, проникающего в комнату через щель в оконных ставнях. Другое важное открытие в области спектроскопии сделал ученый и астроном Вильям Гершель. Он устанавливал термометр в различных по цвету участках спектра и регистрировал температуру. Показания термометра росли при переходе от синего цвета к красному. К своему большому удивлению он обнаружил, что, если передвинуть термометр дальше за красный участок спектра в невидимую его часть, температура продолжает расти! Гершель совершенно случайно натолкнулся на невидимую тепловую радиацию и тем самым основал новую область науки — инфракрасную астрономию.

Продолжая исследования солнечного спектра, Вильям Волластон (который был частично слеп) сначала послал солнечный свет на призму через узкую щель. В 1902 г. он обнаружил, что в спектре солнечного света существуют темные полосы. Он насчитал семь таких полос: две в красной части, три в зеленой и две в сине-фиолетовой. Это замечательное открытие привлекло внимание к Солнцу многих исследователей. В 1814 г. Йозеф фон Фраунгофер в Мюнхене получил солнечный спектр хорошего качества. Он зарегистрировал около 500 линий. В честь этого открытия все темные линии спектра Солнца называются фраунгоферовыми.

В 1821 г. Фраунгофер ввел существенное усовершенствование в области солнечной спектроскопии, начав использовать дифракционную решетку вместо призмы. Решетка работает на принципе дифракции, в то время как в призме происходит рефракция или изменение направления света. Это связано с тем, что в более плотных средах распространение света происходит с меньшей скоростью, причем уменьшение скорости зависит от длины волны: красный свет распространяется медленнее синего. Дифракцию понять немного труднее, но принцип явления можно описать следующим образом.

Когда луч света встречает край твердого препятствия, он рассеивается этим экраном в виде расходящегося пучка. Если таких краев много, как, например, при прохождении через решетку, состоящую из сотен тонких нитей, то рассеянный свет представляет собой целый ряд расходящихся пучков. Свет, дифрагированный элементами решетки, вдоль некоторых направлений будет усиливаться. Усиление возникает, если разность хода лучей, идущих от различных элементов, равна целому числу длин волн. Поскольку величина разности хода зависит от длины волны, то свет усиливается в данном направлении только для определенной длины волны. Поэтому, когда мы смотрим на решетку под различными: углами, мы видим максимумы яркости, соответствующие различным длинам волн, т.е. видим солнечный свет, разложенный в спектр. Если вы никогда не видели такую картину, то, вероятно, наше упрощенное объяснение не очень убедительно. Подобный эффект вы можете наблюдать, наклоняя обычную грампластинку относительно падающего солнечного света. Бороздки пластинки здесь играют роль штрихов решетки.

В солнечной спектроскопии используются большие решетки, достигающие 10 см, на которых нанесены десятки тысяч штрихов. При совместном использовании телескопа и спектрометра можно изучать спектр различных частей солнечного диска, и исследовать изменения температуры, состава и скорости внешних слоев Солнца. Каждый слой солнечной атмосферы характеризуется определенным интервалом значений температуры и давления. Поэтому и оптические свойства каждого слоя различны. Так же как геологи последовательно снимают слои земной поверхности, соответствующие различным эпохам истории Земли, так и спектроскописты своими методами могут проникать сквозь различные слои атмосферы Солнца.

Для усиления контраста фотографы часто используют цветные фильтры. Желая запечатлеть образование облаков, они ставят перед объективом красный фильтр, отсекая голубой цвет ясного неба. Подобная методика дает ценные результаты в астрономии. Так, у спиральной галактики, сфотографированной в синем свете, хорошо видны рукава; рисунок газовой туманности, наоборот, рельефнее виден в красном свете. Однако используемые для этих целей цветные стекла или желатиновые фильтры широкополосны, так, они могут пропускать свет в полосе длин волн, равной примерно 100 нанометрам (нанометр составляет 10– 9 м и часто выражается в ангстремах, 1 нанометр равен 10А). Для научной работы имеются фильтры с меньшей полосой пропускания до 0,01 нанометра, или 0,1 А. Для построения таких фильтров используется принцип интерференции света в оптической системе фильтра. Свет отражается на различных элементах фильтра таким образом, что в результате гасится все, кроме излучения в выбранном спектральном интервале, который может быть сделан очень узким (до 0,01 нм). (Как было упомянуто выше, только через такие фильтры можно смотреть прямо на Солнце.) Интерференционный фильтр может обрезать 99,95% падающего света, зато излучение в выбранном интервале длин волн проходит полностью. Достоинство этих фильтров заключается как раз в том, что можно рассматривать солнечный диск в очень узком участке спектра. Как мы увидим, это очень важно для изучения различных слоев атмосферы Солнца.

Солнечный свет излучается различными слоями солнечной атмосферы. Как я уже отмечал, температура и давление меняются во внешних слоях Солнца. Красное излучение приходит из более глубоких слоев, чем синее. Желтый свет Солнца, видимый нами невооруженным глазом, является смесью излучений, выходящих из различных слоев. Изучая Солнце в определенных длинах волн, мы тем самым рассматриваем различные слои солнечной «луковицы». Это очень мощное средство для выделения отдельных слоев, особенно если наблюдения ведутся в одной из фраунгоферовых спектральных линий. Например, на фотографиях (называемых спектрогелиограммами), полученных в свете линии К ( 393,4 нм) ионизованного атома кальция, видны яркие области, особенно вблизи солнечных пятен, где атомы кальция чрезвычайно возбуждены.

Заслуга в изобретении устройства для получения фотографии Солнца в узком спектральном диапазоне (т.е. в монохроматическом свете) принадлежит двум исследователям: Джоржу Хейлу из США и Деландру из Франции. Оба изобрели спектрогелиограф одновременно и независимо друг от друга. Гений американской астрономии Хейл построил первый такой прибор в своей личной обсерватории вблизи Чикаго. В 1889 г., будучи еще студентом Массачусетского технологического института, Хейл видоизменил Гарвардский спектрограф так, что можно было получить изображение Солнца в одной спектральной линии. Хейлу тогда был всего 21 год. Основной принцип метода легко понять. Солнечный телескоп образует изображение Солнца на щели спектрографа, и в спектрограф через эту щель проникает узкая полоска поверхности Солнца. Эта «полоска Солнца» в спектрографе при помощи призм и решетки разлагается в спектр, и в каждой спектральной линии мы имеем по существу монохроматическое изображение щели спектрографа. Можно расположить фотографическую пластинку в спектрографе так, чтобы на нее падала только одна сильная линия, например Н. Тогда на этой пластинке будет зарегистрировано монохроматическое (в Н) изображение одной узкой полоски поверхности Солнца. Если начать одновременно и синхронно двигать изображение Солнца на входной щели спектрографа и фотографическую пластинку, то на пластинке мы можем получить непрерывное монохроматическое изображение диска Солнца (подобно тому, как сканирующий растр позволяет получить телевизионное изображение). Такова основная идея спектрогелиоскопа. В настоящее время для получения монохроматических изображений Солнца используются интерференционные фильтры, они и по цене доступны любителям астрономам. У таких фильтров нет движущихся частей, работа с ними не сложна, а скорость получения снимков высока.

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6