Чтение онлайн

на главную

Жанры

Дневная звезда. Рассказ о нашем Солнце

Миттон Саймон

Шрифт:

Восемь космических кораблей типа OSO (Orbiting Solar Observatory — вращающиеся солнечные обсерватории) были оснащены рядом приборов. OSO-7, запущенный в конце 1971 г., функционировал в течение двух с половиной лет, что само по себе является замечательным достижением, поскольку спутник вскоре после запуска начал неконтролируемо вращаться вокруг своей оси и казался обреченным. Только при помощи новой системы солнечных датчиков и гиросистемы, не применяемых ранее ни на одном из прежних космических кораблей этого типа, удалось с Земли стабилизировать спутник. На борту OSO-7 находился коронограф белого света, затмевающий диск (искусственная луна) которого был укреплен на стержне перед телескопом. Ведь в вакууме космического пространства размещение маленького диска на небольшом расстоянии от телескопа достаточно для того, чтобы создать искусственное затмение и видеть корону! Кроме того, на спутнике был размещен гамма-спектрометр, спектрограф для

рентгеновского и высокоэнергичного ультрафиолетового излучений и прибор для измерения рентгеновских потоков от Солнца. На OSO-7 были установлены также рентгеновские телескопы для изучения рентгена на других звездах. Каждые 90 минут эллиптическая орбита ИСЗ пересекала верхние слои земной атмосферы, и в результате возникающего при этом торможения OSO-7 в июле 1974 г упал в нижнюю атмосферу и сгорел. При помощи ИСЗ типа OSO Солнце наблюдалось в течение целого 11-летнего цикла активности.

Необычайно успешно были проведены солнечные исследования при помощи американской космической станции «Скайлэб», на борту которой был размещен солнечный телескоп Apollo. Это была первая астрономическая обсерватория в космическом пространстве с непосредственным участием людей. Восемь солнечных телескопов, размещенных на этой космической станции, управлялись с Земли или астронавтами. Шесть основных солнечных телескопов регистрировали и фотографировали внешнюю атмосферу Солнца в диапазоне длин волн от видимого света до рентгена. На фотографиях в рентгене была видна детальная структура Солнца до высот в 0,5 солнечного радиуса над солнечной поверхностью.

На «Скайлэбе» были установлены гораздо более совершенные приборы, чем на других ИСЗ. Размер «Скайлэба» позволил поставить большие и тяжелые инструменты. Площадь, отданная под научное оборудование, составляла 6 м2, а вес телескопов достигал почти тонны. Система управления потребляла энергию, равную 2 кВт, в 100 раз меньше, чем ИСЗ типа OSO.

Важно также, что большое количество получаемых данных можно было быстро передавать на Землю — в среднем 600 фотоснимков в день. Более того, различного вида изображения Солнца могли передаваться на Землю одновременно — например, изображения в белом свете и ультрафиолете; это дало возможность ученым и астрономам эффективнее планировать наблюдения. Экипаж «Скайлэба», естественно, должен был вернуться на Землю. Это дало прекрасную возможность использовать при работе с некоторыми телескопами фотопленку. Даже при наличии электронной страны чудес на корабле обычная пленка обладает тем преимуществом, что она является идеальным хранителем информации. Изображение Солнца для передачи на Землю при помощи телевидения должно быть расщеплено на миллион частей. Пленка обеспечивает быстрое эффективное накопление и сохранение данных, которые не нужно оцифровывать и передавать на Землю. Астронавт может вынуть пленку из кассеты (для этого он должен покинуть корабль) и привезти ее обратно на Землю. Всего ученые использовали тридцать коробок пленки и получили 150 000 хороших кадров.

Другим важным фактором, обеспечившим успех миссии «Скайлэба», была поддержка со стороны Земли. Мировая сеть солнечных обсерваторий и станций использовалась для независимого наблюдения за Солнцем с целью помочь исследователям на «Скайлэбе». Когда что-то неожиданное происходило на Солнце, это сразу же сообщалось на космический корабль. Ежедневно наземное руководство полетом вырабатывало программу на следующий день. Наконец, сами астронавты при необходимости играли решающую роль в ремонте космической станции и оборудования: освобождали заклинившиеся жалюзи, сменяли камеры, заряжали пленку и даже спасали саму космическую капсулу в начале полета после неудачного запуска. Стоимость всего солнечного эксперимента составила около 250 млн. долларов, однако затраты были с лихвой окуплены большим количеством новой информации о природе любимой звезды астрономов.

Стоит сделать еще одно замечание. За исключением радиотелескопов, большинство инструментов, применяемых в солнечных исследованиях, не может быть использовано для изучения других звезд, намного более удаленных от нас, чем Солнце. Самые близкие звезды находятся в миллион раз дальше. Мы не можем увидеть слабых ореолов вокруг других звезд, подобных солнечной короне во время солнечного затмения. Только на небольшом числе самых близких гигантских звезд можно смутно различить грубые детали поверхностной структуры. Даже самые крупные телескопы не могут разрешить диск размером в солнечный диаметр. Никакая другая звезда не исследуется с такой точностью, с какой проводятся обычные солнечные наблюдения. Дневная звезда, полная тайны, сообщает нам больше об обычных объектах Вселенной, чем это сможет сделать когда-нибудь любая ночная звезда.

Архитектура Солнца

Если посмотреть на Солнце простым глазом, оно кажется ослепительно ярким идеальным желтым диском. На фотографиях Солнца, полученных в видимом свете, заметно, что на краю диска Солнце слегка темнее. Это явление называется потемнением к краю. Его можно объяснить следующим образом. Луч зрения проникает в центр видимого диска вертикально, проходя через газовую атмосферу Солнца. Когда мы смотрим на край, луч зрения проходит параллельно поверхности Солнца и пересекает только верхние слои раскаленного газа, несколько более холодные. Итак, свет, идущий от края Солнца, излучается более холодным газом и должен проходить через большую толщу атмосферы, чем свет, идущий из центра диска. В этом и заключается объяснение потемнения к краю. Но что это говорит нам о структуре Солнца? Основной вывод, который можно сделать, заключается в том, что газы нижней атмосферы горячее газов верхней атмосферы. Конечно, вы можете подумать, что не такое уж это большое открытие. Однако эта небольшая информация об архитектуре Солнца могла быть сделана всего лишь на основе простого наблюдения.

Между прочим, некоторые звезды показывают уярчение к краю (они горячее на краю). Это значит, что изменение температуры с высотой у них противоположно солнечному. Еще более усложняют картину радиокарты нашего Солнца: радиояркость на краю Солнца выше. Это означает, что какая-то часть радиоизлучения генерируется во внешней атмосфере.

Для рассмотрения структуры Солнца я опишу воображаемое путешествие через центр Солнца к Земле — хотя такое путешествие и совершают все время световые частицы-фотоны, перенося свет и тепло.

Отправляясь в путешествие, зададимся вопросом, как мы узнаем температуру и плотность. Величины большинства физических параметров не измеряются, а рассчитываются теоретически. Структура внутренней части Солнца определяется путем размышления и расчета. Вот этапы этого пути: теория, написание уравнений, мощные вычислительные машины. И конечно, нужна еще удача. Известны обычно только некоторые глобальные характеристики, такие, как масса или радиус, а также физические условия на излучающей поверхности. В результате наблюдений других звезд мы знаем также взаимную зависимость некоторых параметров (например, поверхностной температуры и массы). Химический состав Солнца может быть определен, как мы увидим дальше, из спектроскопических данных. Теоретик должен на основании всех этих данных создать математическую модель Солнца. Если эта модель соответствует всем известным наблюдательным свойствам и продолжает соответствовать новым результатам, то можно считать ее довольно хорошим приближением к действительности. Такой метод используется в солнечной физике почти полстолетия. Сейчас мы имеем уже разумное глобальное представление о структуре Солнца. Мы не можем теперь произвольно менять некоторые солнечные параметры, такие, например, как температура ядра, не оказывая существенного влияния на величину наблюдаемой яркости Солнца. Итак, начнем наше воображаемое путешествие из глубины Солнца, из области, которая пока может быть исследована только при помощи математики и вычислительной техники.

Рис. Основные зоны внутри Солнца.

Центральная часть Солнца для краткости называется ядром. Внутри ядра вещество чрезвычайно сжато. Солнце находится в устойчивом состоянии под действием сил гравитации со стороны своего собственного вещества, и солнечное ядро сжато весом вышележащей материи. Хотя радиус ядра равен примерно одной четверти радиуса Солнца, а объем ядра поэтому составляет менее 2% полного объема Солнца, почти половина солнечной массы упакована в нем. Слово «упаковано» хорошо соответствует действительности — ведь плотность внутри ядра равна 155 г/см3, она в 10 раз больше, чем плотность свинца. Внутреннее давление огромно, ~3x1011 атмосфер, а температура составляет 14—15 млн. градусов по Кельвину.

Условия точно такие, какие нужны для работы ядерного реактора. Ядро и представляет собой управляемую ядерную станцию, где водород превращается в гелий. Энергия, освобождаемая в результате ядерных процессов, пересекает ядро в виде излучения.

Передвинувшись на 1/4 радиуса Солнца, мы покидаем ядро и вступаем в конвективную зону, которая простирается вплоть до видимой поверхности Солнца. В этой зоне сосредоточена остальная половина массы Солнца. Здесь не происходит образования энергии, так как температура и давление вещества падают ниже значений, необходимых для работы ядерного реактора. Чем ближе мы к поверхности, тем меньше температура и давление. Другими словами, мы движемся вдоль направления градиента температуры и плотности. На расстоянии в 0,1 солнечного радиуса под поверхностью Солнца температура приблизительно равна 600 000 К, а давление составляет всего 1 млн. атмосфер. Внутри конвективной зоны имеют место крупномасштабные движения вещества, в результате которых энергия переносится от ядра к поверхности.

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6