Чтение онлайн

на главную - закладки

Жанры

Дневная звезда. Рассказ о нашем Солнце

Миттон Саймон

Шрифт:

Зрительная труба с экраном от прямого солнечного света направляется на Солнце методом последовательных приближений. Солнечное изображение проектируется на кусок белого картона, помещаемого перед окуляром. Постепенно вы научитесь довольно легко получать на экране сфокусированное резкое солнечное изображение. Если диаметр его составляет несколько сантиметров, то одно или несколько солнечных пятен могут быть хорошо видны. В результате внимательного рассмотрения в течение нескольких минут можно легко отличить солнечные пятна с их характерной полутенью от изображений пылинок в зрительной трубе. Рассматривать на таком экране Солнце и безопасно, и любопытно. Если наблюдать в течение достаточно длительного периода, то можно увидеть, как меняется картина на поверхности Солнца, которое так ошибочно считалось Аристотелем «беспорочным». Такой эксперимент хорошо проводить и в школе на

уроках астрономии, поскольку он представляет собой одну из немногих астрономических демонстраций, возможных в дневное время. Но не забывайте, что нельзя смотреть через окуляр прямо на Солнце!

И еще одно предупреждение. Недорогие телескопы часто снабжаются небольшими солнечными фильтрами для использования совместно с окуляром. Предполагается, что темное стекло не пропускает излучение Солнца. Хотя частично это верно, пользоваться такими фильтрами опасно. Линзы телескопа, даже самые маленькие, собирают по крайней мере в 100 раз больше света, чем невооруженный глаз. Так что даже если фильтр поглощает 99 % излучения, оставшийся свет все еще может ослепить. Кроме того, из-за нагрева фильтр может треснуть (помните, что кусочек горячего сломанного стекла может вызвать пожар!), и ваш глаз окажется совсем незащищенным. Наконец, дешевые фильтры не полностью задерживают ультрафиолетовое излучение, а оно наиболее опасно. Британский астроном-любитель Патрик Мур рекомендует эти фильтры утопить в море! Ну, я думаю, достаточно их просто выбросить, не то какой-нибудь не очень умный наблюдатель вдруг решит ими воспользоваться.

При работе с более дорогими любительскими телескопами можно использовать совсем другой тип фильтра, так называемый интерференционный. Эти фильтры располагаются перед входной апертурой телескопа. Для уменьшения проходящего через них излучения здесь используются физические свойства самого света. Из-за очень малой полосы пропускания через эти фильтры проходит лишь 0,1 % солнечного света. Мы встретимся с этими фильтрами позже, поскольку они широко используются в научных исследованиях Солнца. Стоимость таких фильтров, выпускаемых для любителей, составляет несколько сотен американских долларов. При помощи таких фильтров квалифицированный любитель сможет увидеть интересные явления на Солнце.

Многие владельцы телескопов хотят заняться фотографированием Солнца. Это уже особая задача, но успешное ее выполнение даст большое удовлетворение. Основная проблема заключается, конечно, в чрезвычайно высоких потоках тепла и света. Существуют специальные методы для преодоления этих трудностей, однако здесь мы не будем вдаваться в детали.

Для работы научных обсерваторий, проводящих солнечные исследования, необходимы приборы различного типа. Разумеется, каждая обсерватория специализируется в какой-то определенной области исследования, и поэтому имеет не все солнечные инструменты, а только те, которые необходимы для таких исследований.

Естественно, что астрономов интересует величина энергии, излучаемой Солнцем. На практике для этого измеряется количество энергии, получаемой от Солнца Землей, а затем, исходя из геометрических соображений, определяется энергия солнечного излучения или светимость. Количество энергии, падающей в 1 с на 1 м2 верхней поверхности нашей атмосферы, называется солнечным параметром. Его раньше обычно называли солнечной постоянной, однако астрономы и метеорологи в последнее время обнаружили, что эта величина на самом деле может немного меняться. Как вы заметили, солнечный параметр определяется через энергию, падающую на поверхность нашей атмосферы, а не на поверхность Земли. Это связано с тем, что прозрачность воздуха в разных частях Земли различна. Если измерения производятся на поверхности Земли, то должна быть введена поправка, учитывающая поглощение атмосферы. В измерении интенсивности приходящего на Землю солнечного излучения нуждаются как астрономы, так и метеорологи. Принцип измерения заключается в достаточно точном определении температуры тела, которое нагревается падающим на него солнечным излучением, либо в подсчете числа электронов, освобождающихся в полупроводнике под влиянием солнечного света. Эти приборы называются по-разному: термопилы, болометры, радиометры и пиргелиометры. Однако нас интересуют не технические детали, а основные принципы.

Еще в 1837 г. Пуле измерил интенсивность солнечного излучения следующим удивительно простым способом. Он взял медный горшок, выкрасил его в черный цвет, чтобы уменьшить отражение света, и наполнил его водой, в которую погрузил термометр. Сначала он измерил температуру воды, когда черный горшок стоял в тени. Затем он вынес его на Солнце и каждую минуту фиксировал подъем температуры. Поправка на атмосферное поглощение, которую он сделал, оказалась с точностью до 10% близка к правильному значению. Не правда ли, это поразительно: не тратя денег и пользуясь домашней утварью, Пуле получил ответ, вполне пригодный для повседневных задач. При усовершенствовании этого метода были созданы приборы, измеряющие солнечное излучение по всему спектральному диапазону от инфракрасного до ультрафиолетового. Например, спектробо-лометр — прибор, также изготовленный в прошлом столетии, измеряет распределение энергии по спектру.

На расстоянии в одну астрономическую единицу (примерно 172 млн. км) от Солнца поток энергии составляет 1,36 кВт/м2. Этот поток не полностью достигает поверхности Земли. Если Солнце находится точно в зените, то мощность около 1 кВт/м2 падает на Землю. Умножив эту величину на площадь сферы с радиусом в одну астрономическую единицу, определим полное количество солнечной энергии, излучаемой Солнцем в космическое пространство. Оно очень велико: 3,83x1026 Вт, причем на Землю приходится 2x1017 Вт. Такие цифры трудно представить разумом: ведь 1026 — это 1, за которой следует 26 нулей! Сопоставим две цифры: величина солнечной энергии, достигающая поверхности Земли, превышает 1014 кВт, в то время как вся мощность, вырабатываемая человечеством, составляет примерно 3x109 кВт, т.е. в 30 000 раз меньше.

Теперь зададимся вопросом, как сопоставить энергию нашей дневной звезды с энергией, приходящей от других звезд. Отклонимся немного в сторону и обсудим понятие звездной величины. Это понятие было введено 25 веков тому назад греческим философом Гиппархом для относительного сопоставления яркости звезд. Как видите, астрономия — наука, оперирующая иногда очень древними понятиями (правда, не только астрономия: например, мощность двигателей внутреннего сгорания выражается в лошадиных силах, а не киловаттах). По шкале Гиппарха самым ярким звездам была приписана первая звездная величина, а звездам едва заметным глазу — шестая. Все остальные звезды помещались в интервале между 1 и 6. Конечно, впоследствии с учетом научных достижений XIX столетия, система была модернизирована, а видимая яркость звезд определена с точностью до второго знака после запятой.

Вероятно, вы заметили, что при такой системе чем слабее звезда, тем выше значение ее звездной величины. Самые слабые объекты, едва видимые при помощи телескопов, имеют звездную величину, примерно равную +26. Звездная величина самой яркой звезды на нашем небе, Сириуса, равна -1,42, а планеты Венера в максимуме яркости -4,4. Видимая звездная величина нашего Солнца равна -26,7. Более чем 52 звездные величины, или 1021 в единицах относительной энергии, получаемой Землей, отделяют Солнце от самых слабых галактик. От Солнца приходит столько же света, сколько мы получили бы от 104 млн. звезд, подобных Сириусу. Необходимо подчеркнуть, что такое различие связано не с тем, что Солнце является сверхмощной звездой, а просто потому, что оно близко от нас.

Астрономы заинтересованы в измерении солнечной энергии для того, чтобы понять, как работает Солнце. Метеорологи интересуются Солнцем с точки зрения его влияния на климат. Для этого на тысячах метеорологических станций, разбросанных по всему миру, ежедневно измеряется интенсивность солнечного излучения.

Для того чтобы следить, что происходит на солнечной поверхности, или, как говорят, за погодой на Солнце, нужны телескопы специального рода. Они обычно совсем не похожи на другие астрономические телескопы из-за двух основных факторов. Во-первых, траектория Солнца по небу проходит в фиксированных интервалах высот и углов относительно горизонта, поэтому в отличие от астрономических телескопов не нужно, чтобы телескоп мог быть направлен на любую точку неба. Во-вторых, яркость Солнца достаточно велика, и задача заключается не в том, чтобы собрать большое количество света, а в получении изображений высокого качества. Первая особенность приводит к тому, что часто основная структура телескопа неподвижна, и только единственное подвижное зеркало, называемое гелиостатом, служит для направления света в телескоп. Из второй особенности вытекает необходимость использовать длиннофокусные зеркала или объективы для построения изображения Солнца, так как при этом солнечные изображения имеют большие размеры и не так ярки.

Поделиться:
Популярные книги

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Играть, чтобы жить. Книга 1. Срыв

Рус Дмитрий
1. Играть, чтобы жить
Фантастика:
фэнтези
киберпанк
рпг
попаданцы
9.31
рейтинг книги
Играть, чтобы жить. Книга 1. Срыв

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

На границе империй. Том 2

INDIGO
2. Фортуна дама переменчивая
Фантастика:
космическая фантастика
7.35
рейтинг книги
На границе империй. Том 2

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот