Дневная звезда. Рассказ о нашем Солнце
Шрифт:
Эта сила — внутреннее давление газа. Когда шар сжимают, газовое давление внутри него восстанавливает его прежнюю форму. Газовое давление также поддерживает атмосферу Земли. Если говорить строже, то сила, уравновешивающая гравитацию,— это градиент газового давления. Наблюдения показывают, что звезды, в частности Солнце, чрезвычайно устойчивы на протяжении миллионов лет, и это приводит нас к выводу, что любая небольшая часть Солнца находится в устойчивом равновесии вследствие идеального баланса сжимающей силы гравитации и отталкивающей силы градиента давления. Давление в центре Солнца, составляющее миллиарды атмосфер, может быть грубо оценено путем расчета веса столба газа, вытянутого от центра Солнца до фотосферы.
В соответствии с физическими газовыми законами давление и температура фиксированной
Установив тот факт, что Солнце находится в идеальном равновесии, необходимо ответить на следующий важный вопрос. Известно, что горячая поверхность Солнца излучает энергию в количестве 3,83x1026 Вт/с. Как компенсируются эти непрерывные потери? Без возмещения этих энергетических потерь Солнце неизбежно должно остыть и сжаться. Однако мы знаем, что на самом деле в течение 5 миллиардов лет поток энергии от Солнца почти не менялся.
Еще недавно астрономы совсем не понимали физической природы деятельности Солнца. У меня есть книга, опубликованная в 1892 г., в которой так объясняется энергетика Солнца: «Солнце является самым мощным очагом, дающим тепло и свет, какой только можно себе представить». Далее в этой книге говорится, что, по мнению астрономов, у Солнца под сверкающей поверхностью твердое и даже холодное ядро.
Одна из первых серьезных попыток объяснить энергетику Солнца была сделана в 1842 г. В этом году Майер предположил, что энергия Солнца пополняется падающими метеоритами. Однако вскоре было показано, что такой энергии Солнцу хватит ненадолго.
В качестве альтернативы лорд Кельвин (Уильям Томсон) и Герман фон Гельмгольц выдвинули гравитационную теорию, согласно которой ежегодное сокращение размера Солнца на 20 м могло бы дать энергию, достаточную для компенсации потерь на излучение. Такое слабое сжатие, измерить которое невозможно и в наши дни, могло бы поддержать жизнь Солнца на протяжении 50 млн. лет. Этот срок при тогдашнем состоянии геологических знаний о времени существования Земли казался вполне достаточным. Однако в начале двадцатого столетия было показано, что возраст окаменелостей и осадочных пород превышает сотни млн. лет, и необходим более эффективный механизм, нежели простое горение, для поддержания излучения Солнца. (Только после экспедиции на Луну стало ясным, что возраст Земли и Луны составляет 4,7 миллиарда лет, а Солнца — 5,6 миллиарда лет.)
Астрономы были поставлены в тупик перед проблемой объяснения продолжительности жизни Солнца, вытекающей из геологических данных. Спасителем явился сэр Джеймс Джинс. В 1920 г. он высказал предположение, что необходимая для жизнедеятельности Солнца энергия возникает за счет радиоактивности. Хотя в настоящее время эта гипотеза считается неверной, она заставила других ученых думать в правильном направлении, а именно рассматривать в качестве источника энергии Солнца и других звезд энергию, возникающую при превращениях атомов. Радиоактивность — это процесс, при котором ядра атомов распадаются обычно с излучением других частиц, но выделяющаяся при этом процессе энергия мала. Джинс предположил, что источником является энергия распада сверхатомов, которые, как он думал, могли остаться со времени ранней стадии развития Вселенной.
Однако гипотеза Джинса оказалась несостоятельной. Весьма поучительно рассмотреть причины этого. Основной вопрос заключается в следующем. Если энергия поставляется радиоактивным распадом, почему Солнце так устойчиво?
Мы уже отмечали строго равновесное состояние внутри Солнца; причиной его является идеальный баланс сил гравитации и градиента давления. Такой баланс невозможен при радиоактивном нагреве, так как процесс радиоактивного распада является спонтанным, зависящим только от самих ядер атомов, и поэтому не подвержен влиянию внешних условий, таких, как температура и давление. Короче говоря, у радиоактивных звезд, если бы они существовали, нет способов управления температурой и процессом выделения энергии. Такие звезды неизменно взрывались бы при сжатии или расширении, как атомные бомбы. Необходимо, чтобы источник энергии помогал звезде остаться устойчивой. Источник энергии должен работать интенсивнее при небольшом сжатии звезды; это приведет к выделению дополнительного тепла и увеличению препятствующего сжатию давления. Тот же самый источник должен работать менее эффективно при небольшом расширении звезды, тем самым уменьшая давление. Для устойчивости звезды нужно, чтобы источник энергии работал подобно предохранительному клапану.
В 1931 г. британский астроном Аткинсон предположил, что источником энергии Солнца может быть процесс захвата лишних протонов ядрами атомов. Протон — это тяжелая ядерная частица, несущая положительный электрический заряд. Атом водорода состоит из тяжелого центрального протона и вращающегося электрона. Совместно протон и электрон делают атом электрически нейтральным.
В этом месте нашего повествования мы увидим, как исследование излучения Солнца помогло общему развитию физики за последние пятьдесят лет. Следуя идее Аткинсона, американский астроном Дональд Мензел указал, что из-за высокого относительного содержания протонов (ядер водорода) внутри звезд процесс взаимодействия протонов может быть важным источником энергии Солнца. Слияние протонов, в результате которого возникает более тяжелое ядро, происходит с выделением ядерной энергии. Однако в начале 30-х годов ученые считали, что взаимодействия протонов с выделением энергии (так называемые термоядерные реакции) не могут осуществляться, поскольку из-за одинаковых по знаку (положительных) зарядов протоны слишком сильно отталкиваются друг от друга. Гамов показал, что это простое возражение ошибочно для странного мира атомных частиц. Используя новую область науки — квантовую механику, занимающуюся взаимодействием частиц в микромире, Гамов доказал, что протоны могут проникать друг в друга. Они могут приблизиться настолько, что их слияние произойдет до того, как эта электрическая сила «осознает» происходящее!
В 1939 г. работой Гамова воспользовались Ганс Бёте в США и Карл фон Вайцзекер в Германии. Они независимо друг от друга разработали первые возможные схемы выделения ядерной энергии внутри Солнца. Их выводы были, естественно, основаны на тогдашних достижениях ядерной физики. Их схема включала взаимодействие протонов с ядрами углерода. Мы знаем теперь, что реакции с участием ядер углерода важны только для звезд, масса которых больше массы Солнца. Сейчас считают, что для Солнца важны более простые реакции с участием в основном протонов. Однако, прежде чем приступить к рассказу об этих чудесах природы, познакомимся немного с самым знаменитым уравнением физики.
Для этого нам нужно сделать короткий экскурс в удивительный мир теории относительности Эйнштейна, одно из соотношений которой имеет вид Е = тс2. Это уравнение говорит нам, что энергия Е и масса т — взаимозаменяемые величины. Множитель с2 представляет собой значение квадрата скорости света и является очень большой величиной. Приведем пример: 1 г вещества энергетически эквивалентен 30 млн. кВт-часов. Этот пример показывает, что вся масса т в принципе может быть превращена в энергию. Хотя полный переход массы в энергию и может происходить для некоторых фундаментальных частиц, для обычного вещества этот процесс совсем не так эффективен. Как мы увидим, на Солнце меньше 1 % массы может переходить в излучение.
Основной процесс, приводящий к выделению энергии внутри Солнца, заключается в образовании из четырех протонов одного атома гелия. При этой термоядерной реакции теряется 0,7 % массы протонов, поскольку суммарная масса образующегося ядра гелия и нескольких других частиц несколько меньше массы участвующих в цикле ядерных реакций четырех протонов. Дефицит массы проявляется в виде излучения, другими словами, энергии. Вначале последовательность реакций превращения водорода в гелий кажется чрезвычайно маловероятной. Однако поскольку Солнце существует, то эти реакции должны иметь место!