Чтение онлайн

на главную

Жанры

До и после Победы. Книга 1
Шрифт:

Можно переделывать для патронов стрелкового оружия и артиллерийские пороха, надо только учесть разный состав - так, в артиллерийских порохах применяется пироксилин с содержанием азота до тринадцати процентов, а в винтовочных - более тринадцати. Первый дает при сгорании больше газов и меньше тепла, второй - наоборот. Впрочем, разница составляет процентов десять от силы, так что чтобы сохранить баллистику, можно просто подобрать другую навеску пороха, а не просто отвешивать то же количество, что и из винтовочного. Ну, если только там не подмешивается нитроглицерин, как у немцев в некоторых порохах - он, конечно, увеличивает энергию сгорания пороха, но это приводит к повышенному разгару стволов, и более резкой отдаче.

Так что оборудование шести табачных фабрик, что тут находились, были под завязку нагружены набивкой пороха в гильзы - вопреки бытовавшему в мое время мнению, табачные фабрики использовались не для полного цикла производства патронов, а только для их снаряжения порохом, так как процесс навески и отсыпки табака в гильзу папиросы схож с процессом навески и отсыпки пороха в гильзы патронов стрелкового оружия.

ГЛАВА 15.

Правда, для получения азотной кислоты аммиак надо окислить - и тут были проблемы с катализаторами. Они делались в виде сетки из платины, или платины с добавлением родия, палладия. При окислении аммиака происходило несколько реакций, и катализаторы увеличивали количество именно нужных, уменьшая количество ненужных - например, образования молекул азота, которого вокруг и так выше крыши. То есть реакция происходила на поверхности катализаторов. К сожалению, у этой же поверхности требовалось обеспечить избыток кислорода - иначе кто же будет окислять аммиак. Но при этом кислород окислял и платину - получался летучий оксид платины, который уносился с потоком газов. То есть катализаторы были расходным материалом. Часть этого летучего оксида улавливалась специальными ловушками - порошком оксида кальция, но не более половины, а ведь ее еще надо было переработать обратно в металлическую платину.

Так что пока наши работали на тех установках и запасах, что тут были, но уже подбирали и другие процессы - прежде всего играясь с понижением температур и давлений - пусть процесс пойдет медленнее, но зато и уменьшится термическое разложение аммиака на молекулярный азот и водород, вместо образования оксидов - ведь молекула азота довольно устойчивое соединение, нам же нужны именно оксиды, которые при смешивании с водой и дадут азотную кислоту - ну, через промежуточную азотистую.

Да и другие катализаторы можно попробовать - ведь для того же окисления серы при получении серной кислоты также используют и платиновые, и железные, и ванадиевые катализаторы - все зависит только от доступности - ванадиевый самый оптимальный, платиновый - самый дорогой, а железный дает небольшой выход. Но ведь дает ! Так и здесь - еще помучаемся. Тот же Оствальд, получивший в 1903 году патент на производств кислоты из аммиака на платиновых катализаторах (хотя реакцию открыл Кюльман в 1839м, а еще раньше - в 1800м году - Фуркуа безо всякого катализатора окислял аммиак при высокой температуре ) - так вот, Оствальд использовал и другие материалы - окись серебра, меди, железа, хрома, никеля (как порой писали в книгах этого времени - никкеля - с двумя "к", калькируя с английского названия). И тоже работало, правда, с меньшим выходом.

Так, на платиновых катализаторах при наиболее оптимальной температуре 450 градусов выход оксида азота составлял более 93 процентов, непрореагировавшего аммиака - чуть более процента, и остальное - молекулярный азот. А для катализатора из окиси железа - то есть обычной ржавчины - оптимальной температурой было уже 670 градусов - при этом в окись азота переходило 90 процентов аммиака, непрореагировавшего аммиака практически не было, и 10 процентов - молекулярный азот. То есть катализаторы на окиси железа были почти идентичны катализаторам на платине. А примешивание к ним 3-4 процентов висмута было даже эффективнее платины - при 600 градусах выход окиси азота составлял уже 95 процентов. Пока это мелочь, но надо будет озадачить химиков выцарапать висмут из висмутовых бронз - если дойдем до больших объемов производства, то каждый процент будет вырастать в дополнительные тонны кислоты и сотни убитых фрицев.

Собственно, на этих технологиях Германия и воевала в первую мировую войну, когда доступ к чилийской селитре был утерян - только в 1915м она производила таким образом сто тысяч тонн азотной кислоты. Конечно, платина в качестве катализатора более удобна в том числе и по своим механическим свойствам - так, платиновые сетки строятся из проволоки диаметром 0,04-0,06 миллиметра, с густотой плетения одна-три тысяч петель на квадратный сантиметр. То есть получается очень большая площадь контакта. Окись железа так, естественно, не сплести, а появляющаяся на железных проволочках ржавчина будет быстро уноситься набегающим потоком. Поэтому наши сейчас работали над пока лабораторными установками, в которых можно было бы создать большую поверхность именно ржавчины. Проблема еще заключается в том, что нельзя устанавливать слишком низкий поток реагентов - при окислении - собственно, сгорании - аммиака происходят шесть разных реакций, и те реакции, в результате которых образуются не оксиды азота или азотная кислота, а молекулы азота - вредные для нас. И на железных катализаторах азот как раз интенсивно образуется при высоких температурах - при 700 градусах - уже пятнадцать процентов, а не десять, как при 670, при 800 - 20, при 865 - 44 процента. Соответственно, смесь надо все-таки быстро прогонять, чтобы область реакций не достигала таких температур. Или как-то механически отводить тепло, образующееся при сгорании аммиака.

Ладно, если не получится с большими катализаторами, будем делать множество лабораторных - сечением порядка трех квадратных сантиметров, благо на таких установках и проверяли те выкладки, что были в учебниках и справочниках - просто будем запитывать эти трубки одной большой трубой и так же и забирать. Или компоновать в плоские наборы, чтобы было удобнее отслеживать температуру ... а ведь может потребоваться регулировать потоки индивидуально ... в общем, придется изрядно повозиться. Да и менять железные катализаторы скорее всего придется чаще - это платиновые даже после шести недель работы снижают активность где-то на три-пять процентов, железные наверняка придется менять чаще.

Ну а очистка аммиака и воздуха требуется при использовании любого катализатора, но они и так тут очищались - газы пропускались и через щелочи, и через уголь, известь, растворы солей меди - для каждого из каталитических ядов применялся свой способ. Зато что железный, что платиновый катализаторы имели сравнительно широкий диапазон температур, при которых выход был приличным - так, для железных катализаторов выход более 80 процентов достигался при температурах от 600 до 780 градусов, то есть лаг регулировки процесса составлял почти двести градусов. Для платины этот диапазон был шире - от 370 до 640 - почти триста градусов, то есть и в этом плане платина была более технологична. Хотя примесь висмута в железо расширяла диапазон более чем до четырехсот градусов - от 400 до 840 - в этом плане этот катализатор был самым предпочтительным - и доступным, и упрощающим регулировку процессов, оставалось решить проблемы с быстрым износом и малой механической прочностью ржавчины. Другие катализаторы имели уж очень небольшой диапазон - так, для окиси хрома он составлял всего 60 градусов - от 630 до 690 - регулировать работу установки на таком катализаторе было бы сущим мучением.

Были и другие варианты технологий - например, вместо воздуха применять чистый кислород - чтобы азот воздуха не путался под ногами. Ну и еще вариант - получать оксиды азота в электрической дуге, как норвежцы. Тут уже все упирается в достаточное количество электроэнергии. Где-то читал, что ежедневно в молниях образуется два миллиона тонн азотной кислоты. Два миллиона тонн. И за счет этого ежегодно каждый гектар земной поверхности получает 15 килограммов азотной кислоты. В среднем. Где больше молний - больше, где меньше - меньше, но силы природы, мать их, поражают. Так что стоило попробовать и этот способ получения азотной кислоты, благо он известен еще с конца 18го века, а столетием позже, в 1897 году, Рэлей получал выход азотной кислоты в 50 грамм на 1 кВт-ч. В 1902 на Ниагарском водопаде построили завод для выработки азотной кислоты в электрических дугах - там горело порядка трехсот дуг напряжением до 15 тысяч вольт, но количество получаемой кислоты не окупало затрат. Ну, так это в их условиях, когда экономические моменты превалируют над вопросами выживания. Нам же себестоимость не важна - нам важно получить кислоту.

Правда, норвеги в начале века также начали эксперименты с получением кислоты из воздуха - они начали воздействовать на электрическую дугу магнитным полем, в результате та сильно отклонялась в сторону, разрывалась и возникала заново, уже в другом месте. Прерывая таким образом дугу тысячу раз в секунду они получили дугу в виде тонкого диска диаметром до двух метров - а это уже не те тонкие ниточки, что были у американцев - через такое сечение можно было пропустить много воздуха. Причем начинали они с аппарата мощностью всего в три лошадиные силы (я вычитал про это в книге от 1926го года - тогда, да и позднее, мощность электростанций порой измеряли в лошадиных силах, а не в киловаттах - опять же, часто тут писали не "ватт", а "уатт" - килоуатт, мегауатт - просто транскрибируя фамилию ученого без привязки к русскому произношению), потом перешли на двадцать, опытный завод работал на мощности в 150 лошадей, ну а уж потом понеслась - тысяча, две с половиной, сорок тысяч, и к 1910му году - сто сорок тысяч лошадиных сил. Немцы в 1905 пошли по другому принципу - они возбуждали в трубе дугу длиной до семи метров. У нас Горбов и Миткевич придумали в 1906м году свой вариант печи - при напряжении четыре тысячи вольт и общей мощности всего полкиловатта - у наших выход азотной кислоты составлял 70 грамм на киловатт-час, у норвегов - 67, а у немцев - 63 грамма.

В принципе, сотню киловатт мощности под это дело мы найти сможем - у нас их было под десяток мегаватт. Так что в сутки теоретически сможем получать примерно полторы сотни килограммов азотной кислоты. И это не предел - обогащение газовой смеси кислородом до пятидесяти процентов, использование сухих газов, без водяных паров, повышает выход до 250 грамм с киловатт-часа - в три с половиной раза больше, то есть со ста киловатт - уже 25 килограммов в час, полтонны кислоты в сутки. А это еще дополнительные четыре центнера пороха к той тонне, что вырабатывалась окислением аммиака - 800 000 патронов для пистолетов-пулеметов. Или 26 500 снаряженных рожков по тридцать патронов, или 5 300 человеко-боев средней интенсивности с расходом по пять рожков на бой - в основном засад и нападений на посты и колонны, а если считать по пятьдесят трехпатронных очередей, из которых девяносто процентов только придавит немца, а попадет только десять процентов, то есть пять очередей, то это целая дивизия - 25 000 выбитых фашистов - на время или навсегда. В сутки. Тоже неплохо.

Популярные книги

Камень Книга одиннадцатая

Минин Станислав
11. Камень
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Камень Книга одиннадцатая

Двойная ошибка миллиардера

Тоцка Тала
1. Три звезды
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Двойная ошибка миллиардера

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Чужая жена для полковника

Шо Ольга
2. Мужчины в погонах
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Чужая жена для полковника

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

Вечный Данж V

Матисов Павел
5. Вечный Данж
Фантастика:
фэнтези
7.68
рейтинг книги
Вечный Данж V

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Ученик. Книга вторая

Первухин Андрей Евгеньевич
2. Ученик
Фантастика:
фэнтези
5.40
рейтинг книги
Ученик. Книга вторая

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Покоритель Звездных врат 2

Карелин Сергей Витальевич
2. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат 2