Дорога на космодром
Шрифт:
Идея использования в дирижаблях пороха, высказанная русскими изобретателями, нашла поддержку и в других странах. Но опять-таки нельзя говорить о развитии идеи, поскольку, я убежден, все эти работы независимы, что, разумеется, идет им только во вред.
Через 16 лет после выхода книжки Соковнина, в 1882 году некто Пульк Рабек вновь вернулся к идее реактивного дирижабля, засасывающего воздух и двигающегося за счет реактивной силы, возникающей при его истечении. Дирижабль длиной 100 метров, объемом в 6515 кубических метров тоже не был построен.
Вряд ли и мексиканец
Револьвер – хорошо, а пулемет – еще лучше. За два года до проекта мексиканца американский инженер Самтер Бэтти предложил приделать к хвосту дирижабля взрывную камеру, которую, впрочем, с полным основанием можно считать и орудийным стволом.
Специальный автомат должен подавать в камеру взрывчатку в виде шариков.
Не знаю, как вам, а мне все эти проекты не нравятся. Не нравятся своей бескрылостью, в прямом и переносном смысле этого слова. В переносном – потому что нет в них полета фантазии, а есть простая компиляция. Берутся две известные уже вещи: воздушный шар и реактивная струя и соединяются вместе. Как видите, гибриды, которые выводили путем такого технического скрещивания, быстро увядали и потомства не давали. На первый взгляд все вроде бы правильно и логично, но только на первый взгляд. Несовершенство этих проектов не их вина, а их беда. Еще не существовало теории реактивного движения, которая показала бы бесперспективность поисков на этом пути. Константинов, как вы помните, предупреждал, что не следует приспосабливать ракету к таким транспортным средствам, которые двигаются сравнительно медленно, но совет – это еще не теория.
Аппараты легче воздуха, с их огромными баллонами, гигантским сечением, а значит, и большем сопротивлением окружающей среды – воздуха – при движении, не могли летать быстро. Тут заколдованный круг. Подумайте сами, даже если бы удалось изобрести какой-нибудь фантастический двигатель, очень мощный, легкий и компактный, и поставить его на монгольфьер, или дирижабль, – ничего путного не получилось бы. Сопротивление воздуха при быстром движении или затормозило бы такой аппарат или – деформировало и разрушило бы его.
Но ведь можно усилить конструкцию и не дать ей разрушиться, скажете вы.
Можно. Но будет ли тогда этот аппарат легче воздуха? Сумеет ли он сам себя поднять?
Природа воздушного шара и ракеты несовместимы, а при попытках совместить их мы, как видите, приходим к аппаратам тяжелее воздуха. Но ведь таких аппаратов в XIX веке, можно считать, не существовало. Поэтому проекты таких аппаратов с использованием реактивной тяги – это уже не искусственное соединение известного, а подлинное новаторство, для своего времени стоящее на грани фантастики. И опять-таки очень интересно проследить эволюцию идеи, ее движение от ракетной «птицы» к ракетному кораблю.
Идея орнитоптера – «махолета», то есть летательного аппарата с подвижными крыльями, имеет многовековую историю. Ими занимался Леонардо да Винчи и занимаются современные авиаконструкторы.
Среди бесчисленных систем «махолетов» есть и реактивные. Вслед за Жераром, о котором я уже рассказывал, ракетный орнитоптер конструировал его соотечественник Густав Трувэ. В 1891 году он представил в Парижскую Академию наук проект фантастической машины, перепончатые крылья которой придают ей сходство с ископаемым летающим ящером.
По идее Трувэ, если в согнутой трубке, опять-таки с помощью револьверного барабана-автомата, взрывать периодически патроны с гремучим газом, трубка будет периодически разгибаться. Остается лишь передать это движение крыльям.
Самое
Трувэ построил модель весом в 3,5 килограмма, которая летала.
Двенадцати газовых патронов было достаточно, чтобы она пролетела 75 метров.
Я верю в «махолеты». Мне приходилось беседовать с энтузиастами «машущего крыла», и они убедили меня, что применение новых материалов и технических новинок, недоступных инженерам прошлого, позволит наконец решить уже в XX веке эту задачу, над которой люди бьются так долго.
Но подобно тому, как неандерталец не стал предком современного человека, орнитоптер Трувэ не станет предком «махолета» будущего. Это – тупиковая ветвь.
Есть картинка, датированная серединой прошлого века. Корытце на четырех колесиках. Изогнутые назад крылья. Дельтовидный хвост. Наверху торчит какая-то трубка. Историки спорят относительно автора этого проекта. Одни считают, что он создан в 1837 году нюрнбергским механиком Ребенштейном, который предлагал использовать для полета реактивную силу струи пара или сжатого углекислого газа. Другие считают, что «летающее корытце» сконструировал Вернер Сименс – талантливый инженер и очень оборотистый делец, основатель огромного промышленного концерна «Сименс верке». И случилось это якобы после 1845 года.
Дело в том, что как раз в 1845 году немецкий химик Христиан Фридрих Шенбейн случайно получил пироксилин – сильнейшее для того времени взрывчатое вещество.
Вот эту невероятную и, как всегда бывает, поначалу наверняка преувеличенную силу только что открытого пироксилина и задумал использовать Сименс в своем «ракетном самолете». Очевидно, какие-то новые, более реалистические идеи захлестнули Сименса, и проект остался неосуществленным.
Сейчас многие крупные ученые утверждают, что наиболее интересных открытий надо ждать на «стыках» наук. Но ведь и в прошлом есть масса примеров таких плодотворных «стыков». Так, успехи химии в XIX веке, безусловно, возбуждали инженерную мысль. Открытие гремучего газа – смеси кислорода и водорода – поразило воображение современников: оказывается, столь сильное взрывчатое вещество можно получить из такого доступного сырья, как вода! Газогенератор, в котором вода разлагается электрическим током, представлялся вполне доступным. Он, собственно, и был доступен. Другое дело, что, как выяснилось позднее, сам этот процесс энергетически неэкономичен: та энергия, которая требовалась для генерации электрического тока, разлагавшего воду, не окупалась энергией получаемого гремучего газа. Но, повторяю, это выяснилось позднее, а поначалу гремучий газ всех окрылил. Если вы помните, гигантские гальванические батареи, изобретенные капитаном Немо, разлагали воду, и энергия гремучего газа двигала «Наутилус» Жюля Верна.
Бельгийские инженеры Айгуст Ван-де-Керкховэ и Теодор Снирс поверили фантасту и решили не отстать от капитана Немо. В 1881 году они взяли патент на ракетный двигатель, который состоял из электрических батарей, газогенератора и взрывной камеры с коническим соплом. Изобретатели считали, что их двигатель универсален и может приметаться на суше, на море и в воздухе. Но, увы, и он остался только на бумаге.
Француз Бюиссон пять лет спустя задался целью приспособить пороховые ракеты к лодке, он мечтает о корабле, способном обогнать все парусники и пароходы мира. 16 декабря 1886 года Бюиссон и один из его друзей погибли во время первого же опыта на Сене – их лодка взорвалась.