Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:
Глава 27. Вдохновился? Попотей
Ломать — не строить. Эйнштейну для построения новой физики требовалась новая геометрия, которая описывала бы искажение пространства. К счастью, Риман (и несколько его последователей) уже все придумали. К несчастью, Эйнштейн не слыхал о Римане — как, впрочем, и почти все остальные. Зато Эйнштейн еще как слыхал о Гауссе.
Эйнштейн помнил свой студенческий курс по инфинитезимальной геометрии, включавший гауссову теорию поверхностей. Эйнштейн обратился к своему другу Марселю Гроссманну, которому в 1905 году посвятил свою докторскую диссертацию. Гроссманн к тому времени трудился на ниве математики в Цюрихе и специализировался как раз по геометрии. Встретившись с Марселем, Эйнштейн воскликнул: «Гроссманн, ты должен мне помочь, иначе я сойду с ума» [249] .
249
Pais, стр. 212.
Эйнштейн растолковал свои нужды. Копаясь в литературе, Гроссманн обнаружил работы Римана и других по дифференциальной геометрии. Там все было мудрено. И сложно. Совсем не примитивно. Гроссманн доложил: да, нужная математика
В октябре 1912 года Эйнштейн написал другому своему другу и коллеге-физику Арнольду Зоммерфельду: «…за всю свою жизнь так тяжко я не работал никогда и пропитался великим уважением к математике… по сравнению с этой задачей исходная теория (специальная теория относительности) — детская забава» [251] .
250
Pais, стр. 213.
251
Pais, стр. 216.
Это приключение заняло еще три года, два из которых Эйнштейн трудился в тесном сотрудничестве с Гроссманном. Студент, на чьих конспектах Эйнштейн проскочил учебные годы, теперь стал его наставником. Планк, узнав о замыслах Эйнштейна, сказал ему: «Как старший товарищ, я должен предостеречь вас: для начала у вас ничего не выйдет; а если и выйдет, вам никто не поверит» [252] . Но к 1915 году Эйнштейн вернулся в Берлин — по приглашению самого Планка. С тех пор Гроссманн написал совсем немного исследовательских статей и менее чем через десять лет тяжело заболел рассеянным склерозом. Эйнштейн, постигнув необходимое ему, завершил создание теории без него. 25 ноября 1915 года он представил работу под названием «Уравнения поля тяготения» Прусской научной академии [253] . В ней он объявил: «Наконец общая теория относительности завершена как логическая структура» [254] .
252
Pais, стр. 239.
253
Пятью днями ранее, 20 ноября, Гильберт представил вывод того же уравнения Королевской академии наук в Гёттингене. Этот вывод он произвел независимо от Эйнштейна и в некотором смысле качественнее, но этот вывод явился лишь последним шагом в построении теории, которая, по признанию Гильберта, была творением Эйнштейна. Эйнштейн и Гильберт восхищались друг другом и никакое первенство никогда не оспаривали. Гильберт говорил: «Не математики, а Эйнштейн проделал всю работу». См. Jagdish Mehra, Einstein, Hilbert, and the Theory of Gravitation (Boston: D. Reidel Publishing Co., 1974), стр. 25.
254
Pais, стр. 239.
Как же общая теория относительности описывает природу пространства? Она показывает, как материя и энергия Вселенной влияют на расстояния между ее точками. Пространство, рассматриваемое как множество, есть попросту собрание некоторых элементов — точек. Структура пространства, которую мы называем геометрией, возникает из соотношений между точками, и эти соотношения именуются расстояниями. Привнесенная структура соотносится с исходной так же, как, скажем, телефонная книга со списком домов и карта, определяющая их пространственные связи. Занимаясь картографированием Германии, Гаусс обнаружил, что, определив расстояние между парой точек, можно установить геометрию пространства, а Риман привнес в это наблюдение детали, необходимые Эйнштейну для формулировки его физики в геометрических терминах.
В сухом остатке все сводится к спору двух наших старых друзей — Пифагора и Непифагора. Вспомним, что в евклидовом мире можно померить расстояние между любыми двумя точками, применив теорему Пифагора. Мы попросту накладываем прямоугольную координатную сетку. Назовем координатные оси «восток — запад» и «север — юг». Согласно теореме Пифагора, квадрат расстояния между двумя точками равен сумме квадратов разницы между их положениями относительно оси восток — запад и север — юг.
Как установила Неевклида, в искривленном пространстве это соотношение недействительно. Пифагорову формулу необходимо заменить новой — непифагоровой. В непифагоровой формуле для вычисления расстояний значения разницы вдоль оси север — юг и вдоль оси восток — запад не обязательно считаются одинаково. Более того, возможно, появится и еще одно значение — продукт разнесенности север/юг и восток — запад. Математически говоря, получается: (расстояние)2 = g 11 х (разнесенность восток — запад)2 + + g 22 х (разнесенность север — юг) + g 12 x (разнесенность восток — запад) х (разнесенность север — юг) [255] . Числа, обозначенные через g, называются метрикой пространства (а сами факторы g называются компонентами метрики). Поскольку метрика определяет расстояние между двумя точками, она, геометрически говоря, полностью характеризует пространство. Для евклидовой плоскости и прямоугольных координат компоненты метрики попросту g 11 = g 22 = 1, а g 12 = 0. В этом случае формула Непифагора превращается в обычную пифагорову. В других типах пространства компоненты не так просты, и их значения могут варьировать в зависимости от вашего местоположения. В общей теории относительности эти представления обобщены для трех пространственных измерений и, как и в специальной теории, включают время как четвертое измерение (в четырехмерном пространстве метрика имеет десять независимых компонентов) [256] .
255
На
256
Десять компонентов: g 11, g 12, g 13, g 14, g 22, g 23, g 24, g 33, g 34 и g 44 (избыточность устраняем применением равенства g ij = g ji).
Работа Эйнштейна 1915 года предъявляла уравнение, описывающее распределение материи в пространстве (и времени) в связи с метрикой четырехмерного пространства-времени. Поскольку метрика определяет геометрию, уравнения Эйнштейна определяют форму пространства-времени. В теории Эйнштейна масса не производит гравитационного воздействия, а меняет пространство-время.
Хотя пространство и время взаимосвязаны, однако, если ограничиться определенными обстоятельствами, как то: малыми скоростями и слабой гравитацией, — пространство и время можно рассматривать более-менее порознь. В таком случае допустимо говорить об одном лишь пространстве и о его кривизне. Согласно теории Эйнштейна, искривление области пространства (усредненное во всех направлениях) определяется массой в этой области.
Как мы уже убедились, искривление отражено в отношении площади круга к его радиусу или объему сферы с таким радиусом. Уравнения Эйнштейна утверждают, что при заданной сферической области пространства с равномерно распределенной в ней материей, измеряемый радиус этой сферы будет меньше ожидаемого (с учетом ее объема) пропорционально значению массы внутри нее. Постоянная в этой пропорции чрезвычайно мала: на каждый грамм массы радиус уменьшается всего на 2,5 х 10–29 сантиметра, т. е. 0,000000000000000000000000000025 см. Для нашей планеты, с допущением равномерности ее плотности, разница в радиусах — 1,5 миллиметра. Для Солнца — полкилометра [257] .
257
См. Richard Feynman, Robert Leighton, and Matthew Sands, The Feynman Lectures on Physics, том II (Reading, MA: Addison-Wesley, 1964), гл. 42, стр. 6–7.
Проявления кривизны пространства-времени на Земле минимальны и лишь недавно получили практическое применение (системы спутниковой навигации, к примеру, чтобы сохранялась синхронизация, требуют релятивистских поправок настройки) [258] . Эйнштейн на протяжении многих лет и не предполагал, что изгибание света под действием сил тяготения вообще можно как-то измерить. Но вот наконец решил взглянуть в небо. Эксперимент принципиально прост: дождитесь следующего солнечного затмения и в том месте и в то время, где и когда затмение наблюдается, измерьте положение какой-нибудь звезды, что проявится рядом с Солнцем в процессе затмения (из-за этого затмение и нужно: если Солнце ничто не загораживает, звезду никак не увидать); далее найдите данные о положении этой звезды, скажем, полугодичной давности, когда свет ее достигал ваших глаз, не касаясь нашей родной звезды. Во время затмения проверьте, возникает ли эта звезда там, где «должна», — или слегка «в стороне».
258
Marcia Bartusiak, «Catch a Gravity Wave», Astronomy, October, 2000.
«Слегка» в данном случае — и впрямь слегка: всего 13/4 угловой секунды, или 0,00049°. Сам Ньютон мог бы открыть это явление, хотя его теория предсказывала иное отклонение. К 1915 году Эйнштейн уже сформулировал свои уравнения поля и сделал наилучшее свое предсказание. Первая подлинная проверка общей теории относительности заключалась, таким образом, не в удостоверении изгибания света, а в том, насколько именно он изгибается. Уверенности Эйнштейну хватало.
Глава 28. Торжество синевласых
Для наблюдения за солнечным затмением 29 мая 1919 года были отправлены две британские экспедиции. Артур Стэнли Эддингтон вел в бразильский Собраль ту, которая добилась успеха [259] . Эддингтон писал перед своим отъездом: «Нынешние экспедиции к месту затмения могут впервые выявить вес света [260] ; или же им удастся подтвердить странную теорию Эйнштейна о неевклидовом пространстве; или же они приведут к еще более далеко идущим последствиям — что нет никакого отклонения» [261] . На анализ полученных данных ушло много месяцев. Наконец, 6 ноября, результаты были объявлены на общем собрании Королевского научного и Королевского астрономического обществ. «Нью-Йорк Таймс», до сих пор ни разу не помянувшая Эйнштейна, учуяла, что этой-то новости найдется место на ее страницах [262] . Хотя, похоже, газета все равно неверно оценила важность этой новости: отправила обозревателем своего корреспондента по гольфу, Генри Крауча. Крауч даже на собрание не явился, однако с Эддингтоном все же поговорил.
259
Некоторые современные ученые считают, что Эддингтон мог сжульничать по части кое-каких своих результатов. См., напр.: James Glanz, «New Tactics in Physics: Hiding the Answer», «Нью-Йорк Таймс», 8 августа 2000 г., стр. F1.
260
т. е. его притяжение полем тяготения — «ньютонов» анализ
261
Pais, стр. 304.
262
Описание экспедиции Эддингтона и реакции на нее см. у Кларка, стр. 99–102.