Эврика-86
Шрифт:
От других металлов и сплавов, имеющих высокие механические свойства, алюминий выгодно отличается тем, что очень хорошо обрабатывается давлением, резанием. Например, в результате только одной операции прессования удается получить любую форму профиля — точного по размерам,
сткого, прочного и экономичного. Использование профилей из алюминиезых сплавов открыло перед строителями возможность создания оптимальных конструкций стеновых панелей, подвесных потолков, дверных блоков, оконных рам и других элементов. Такие конструкции легки, прочны, стоимость сборочных работ минимальна; алюминию с помощью электрохимической и
ПОТЕРИ ПРОДУКЦИИ — ДО МИНИМУМА
В последние годы алюминий стал интенсивно использоваться и в различных сферах агропромышленного комплекса. В отношении санитарных норм и некоторых других специфических требований, предъявляемых к конструкционным материалам, он оказался здесь самым подходящим. Алюминий устойчив к воздействию воды, солнца; он не только гигиеничен и нетоксичен (мы ведь без опасения пользуемся алюминиевой посудой), но и легко дезинфицируется и при этом не подвергается коррозии.
Особо перспективен он для сооружения зернохранилищ.
На уборку зерна направляется армада современной сельскохозяйственной техники, поэтому убирают его быстро, потери при этом невелики. Но вот зерно поступает в хранилища. В большинстве из них оно, постепенно расходуясь, находится в среднем около 4–5 месяцев. Зерно — живой организм. При хранении оно поглощает и выделяет влагу и ряд весьма активных веществ, подвержено воздействию бактерий; надо беречь зерно от плесневых грибков, насекомых и грызунов, считаться с тем, что в определенных условиях
оно может саморазогреваться, что ухудшает его качество.
Материал, из которого строят хранилища, должен длительно (как минимум 40–50 лет) противостоять коррозии, обеспечивать нужный режим хранения, легко очищаться и дезинфицироваться. Конструкция должна работать хорошо и надежно в жару и холод, под дождем и снегом, быть высокомеханизированной и не требовать применения ручного труда. Крупносерийное строительство зернохранилищ на обширной территории нашей страны осложняется разнообразием климатических зон, а также тем, что многие хозяйства значительно удалены от железных дорог и дорог с твердым покрытием.
Особенно актуальна проблема сохранности зерна для самого сельского хозяйства, где остается значительная часть урожая в виде семенного и фуражного фонда. Нередко сохранность зерна в колхозах и совхозах полностью зависит от погодных условий, традиционно суровых и неблагоприятных на значительной части нашей страны.
Сегодня у нас емкостей для внутрихозяйственного хранения зерна, которые бы полностью решали проблемы сохранности урожая, не требовали бы больших затрат труда на сооружение, а затем эксплуатацию и отвечали бы всем перечисленным условиям, недостаточно. В результате народному хозяйству наносится немалый ущерб. Это не только физически потерянные тонны зерна, но и снижение его качества из-за неудовлетворительных условий хранения.
Сейчас сложилась диспропорция между высоким уровнем механизации уборки и обработки зерновых и их хранением. Поэтому одну из основных задач Продовольственной программы — увеличение производства зерна — нужно решать, не только повышая урожайность, но и сокращая его потери, в особенности при хранении. До последнего времени
нилища сооружались в основном из железобетона. Но если и дальше поступать таким образом, то быстро решить проблему полного сохранения всего урожая мы не сможем. Строительство из железобетона сравнительно небольших хранилищ вместимостью по 1500–3000 тонн зерна, а именно такие нужны большинству хозяйств, дорого и неэкономично, связано с большими затратами труда. Поэтому возведение хранилищ в условиях сельской местности растягивается нередко на годы. Велики и потребности в материалах, например: на каждую тонну хранимого зерна — около тонны железобетона, в том числе 20–25 килограммов арматурной стали.
Эффективно решить эту задачу можно, лишь используя новые конструкции хранилищ — из облегченных строительных элементов — и индустриальные методы монтажа. Наиболее полно всем этим требованиям отвечают цельнометаллические конструкции. Встает вопрос: из какого же металла строить хранилища? Очевидно, что могут рассматриваться только два конструкционных металла: сталь и алюминий. Но сталь годится лишь в защищенном от коррозии виде, например, оцинкованная. При нарастающем дефиците цинка невозможно выделять ежегодно в течение ряда лет столько листового оцинкованного проката, сколько необходимо для создания недостающих емкостей хранения.
Алюминиевые конструкции не только прочны и легки — они без всяких покрытий стойки к коррозии. Высокие отражательная способность и теплопроводность алюминия уменьшают опасность конденсации влаги, способствуют нормальному режиму хранения; благодаря гладкости алюминия значительно меньше собирается пыли на стенках хранилища.
Расход алюминия на тонну хранимого зерна составляет лишь 6–9 килограммов. Чтобы построить в хозяйстве хранилище, скажем, на 500 тонн зерна, достаточно доставить на место
тельства всего 4 тонны алюминиевых] конструкций; значит, можно обойтись рейсом одного КамАЗа, что немаловажно, если ставить хранилище рядом с полем. А для сооружения такого же по емкости хранилища из железобетона придется привезти около 500 тонн железобетонных элементов, причем масса многих из них достигает 8 тонн. Для работы с такими элементами нужна мощная грузоподъемная техника, а для их доставки — дороги с твердым покрытием и десятки грузовиков, которые сделают по нескольку рейсов.
С переходом на строительство металлических зернохранилищ село получает возможность приобрести хранилище, так же как сегодня оно приобретает трактор или комбайн, максимальной заводской готовности, высокого качества при минимуме собственных трудовых затрат.
Первое наше алюминиевое зерно- , хранилище общей емкостью 1500 тонн . было спроектировано и изготовлено ВИЛСом совместно с Всесоюзным научно-исследовательским институтом механизации сельского хозяйства. Хранилище построили в латвийском колхозе «Адажи». Основной элемент хранилища-алюминиевая цилиндрическая башня-силос диаметром 6 метров и высотой 11 метров. Толщина стенки цилиндрической части силоса всего 3 миллиметра, то есть по отношению к диаметру он представляет собой конструкцию даже более тонкостенную, чем, например, папиросная гильза. Шесть таких силосов (на 250 тонн зерна каждый), связанных воедино технологической системой загрузки и выгрузки, образуют зернохранилище.