Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:

х'=х–а, у'=y, z'=z. (11.2)

Чтобы сделать наш анализ полным, нужно знать, какие силы измеряет Мик. Если сила действует вдоль произвольной линии, то под силой вдоль направления х мы понимаем некоторую часть общей силы, которая равна произведению величины силы на косинус угла между направлением силы и осью х. Легко видеть, что Мик получит те же проекции силы, какие получил Джо, т. е. мы имеем систему уравнений

Fx''=Fx, Fy''=Fy, Fz'=Fz. (11.3)

Уравнения (11.2)

и (11.3) определяют соотношения между величинами, используемыми Джо и Миком.

Теперь поставим вопрос так: если Джо знает законы Ньютона, то будут ли они верны, когда их попробует использовать Мик? Имеет ли значение выбор начала координат? Другими словами, предположим, что уравнения (11.1) верны, а (11.2) и (11.3) определяют соотношения между измеряемыми величинами; верно ли, что

Чтобы проверить эти уравнения, дважды продифференцируем выражение для х по времени. Прежде всего

Предположим теперь, что начало системы координат, которой пользуется Мик, фиксировано (не движется) относительно системы координат Джо, т. е. а постоянна и da/dt=0; таким образом, получаем

dx'/dt=dx/dt и, следовательно,

d2x'/dt2=d2x/dt2 Если предположить, что измеряемые Джо и Миком массы равны, то уравнение (11.4а) принимает вид

Таким образом, произведения массы на ускорение одинаковы у обоих друзей. Можно получить и формулу для FX' . Использовав (11.1), мы обнаружим

. Fx'=Fx.

Следовательно, законы механики, с точки зрения Мика, точно такие же: он пишет законы Ньютона в других координатах, и эти законы оказываются верными. Это означает, что центра Вселенной нет и законы движения выглядят одинаково, с какого бы места они ни наблюдались.

Верно и такое утверждение: если в каком–либо месте установить устройство с каким–то механизмом, то и в любом другом месте это устройство будет работать одинаково. Почему? Потому что любая машина, которую изучает Мик, подчиняется тем же уравнениям, которые описывают работу машины, контролируемой Джо. Поскольку уравнения, одинаковы, то и явления одни ' и те же. Таким образом, доказательство того, что аппарат в новом месте будет работать так же, как на прежнем, сводится к доказательству, что отнесенные к новой точке пространства уравнения воспроизводят себя. Поэтому мы говорим, что законы физики симметричны относительно перемещений в пространстве, симметричны в том смысле, что законы не изменяются при перемещениях начала системы координат. Конечно, каждый интуитивно знает, что это верно, но интересно и полезно обсудить математику этого явления.

§ 3. Вращения

Разобрав вопрос о перенесении начала координат, мы рассмотрели первую задачу из серии более сложных теорем о симметрии физических законов. Следующая теорема утверждает, что и направления координатных осей можно выбрать произвольно. Другими словами, если мы сооружаем где–то какое–то устройство и наблюдаем, как оно работает, а затем по соседству соорудим аналогичное устройство, но расположим его под любым углом относительно первого, то будет ли второе устройство работать так же, как и первое? Вообще говоря, нет, если это, например, старые часы–ходики, известные еще нашим дедам. Если маятник ходиков расположен отвесно, они будут великолепно идти, но если их повернуть так, чтобы маятник уперся в стенку, верного времени они уже не покажут. Значит, нашу теорему нельзя применить к маятнику, если забыть о силе, которая заставляет его качаться. Если мы все–таки верим в симметрию физических законов относительно вращений, то мы должны сделать какие–то вполне определенные предположения о работе ходиков, например что для их работы важен не только часовой механизм, но и что–то, лежащее за его пределами, что–то, что следует обнаружить. Можно также предсказать, что ходики будут идти по–разному, если они попадут куда–то в другое место по отношению к загадочному пока источнику асимметрии (может быть, это Земля). Так и есть на самом деле. Мы знаем, что ходики на искусственном спутнике, например, вообще остановятся,

ибо там отсутствует эффективная сила, а на Марсе скорость их хода будет совсем иной. Маятниковые часы содержат, помимо механизма, еще нечто вне их. Осознав этот факт, мы увидим, что вместе с ходиками нам придется повернуть и Землю. Но нам, конечно, незачем беспокоиться – сделать это очень легко. Мы просто подождем минуту или две, и Земля сама повернется, а ходики затикают уже в новом положении так же весело, как и раньше. Пока мы поворачиваемся в пространстве, измеряемые нами углы изменяются тоже; эти изменения не причиняют особых беспокойств, поскольку в новых условиях мы чувствуем себя точно так же, как и в старых. Здесь может скрываться источник ошибки; верно, что в новом, повернутом относительно старого положении законы остаются прежними, но неверно то, что во вращающейся системе координат справедливы те же законы, что и в покоящейся. Если проделать достаточно тонкие опыты, то можно установить, что Земля вращается, но ни один из этих опытов не скажет нам, что Земля повернулась. Другими словами, мы не можем при помощи этих опытов установить ориентацию Земли, но можем сказать, что ориентация изменяется.

Обсудим теперь влияние ориентации системы координат на физические законы. Давайте посмотрим, не будут ли нам снова полезны Мик и Джо. Чтобы избежать ненужных сложностей, предположим, что эти молодые люди находятся в одной точке пространства (мы уже показали, что их системы координат можно перемещать). Пусть оси системы координат Мика повернуты относительно системы координат Джо на угол ?, Обе системы координат изображены на фиг. 11.2, где мы ограничились двумя измерениями.

Фиг. 11.2. Две координатные системы, ориентированные по–разному.

Произвольная точка Р снабжается координатами (х, у) в системе Джо и (х', у') в системе Мика. Как и в предыдущем случае, начнем с того, что выразим координаты х' и у' через х, у и ?. Для этого опустим из Р перпендикуляры на все четыре координатные оси и проведем АВ перпендикулярно PQ. Из чертежа ясно, что х' можно представить как сумму двух отрезков вдоль оси х', а у'– как разность двух отрезков вдоль АВ. Длины этих отрезков выражаются через х, у и 6; мы добавляем еще уравнение для третьей координаты:

х'=хcos?+– уsin?,

y'=ycos? — xsin?, (11.5)

z'=z.

Теперь (мы поступали так и раньше) установим соотношения между силами, измеряемыми двумя наблюдателями. Предположим, что сила F, имеющая (с точки зрения Джо) составляющие Fx и Fy, действует на расположенную в точке Р на фиг. 11.2 частицу массы m. Для простоты сдвинем обе системы координат так, что начала их переместятся в точку Р, как показано на фиг. 11.3. Мик скажет нам, что сила, по его мнению, имеет составляющие Fx' и Fy' вдоль его осей.

Фиг. 11.3, Составляющие сил в двух системах.

Составляющая Fx, как и Fy, имеет составляющие вдоль обеих осей х' и у'. Чтобы выразить Fx' через Fxи Fy, сложим составляющие этих сил вдоль оси х'; точно таким же образом можно выразить и Fy' через Fх и Fy. В результате получим

Поделиться:
Популярные книги

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Специалист

Кораблев Родион
17. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Специалист

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке