Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:
Фиг. 11 .7. Криволинейная траектория.
Фиг. 11.8, Диаграмма для вычисления ускорения.
Теперь можно поговорить об ускорении. Ускорение, конечно, просто равно ?v/?t. Интересно заметить, что разность скоростей можно разделить на две части: можно представить себе, что ускорение состоит из двух составляющих: ?v? – вектора, параллельного касательной к пути, и вектора ?v?, перпендикулярного к этой касательной. Эти векторы показаны на фиг. 11.8.
a?=dv/dt. (11.15)
Другую, поперечную составляющую ускорения легко вычислить, взглянув на фиг. 11.7 и 11.8. За короткое время ?t изменение угла между v1 и v2 равно малому углу ??. Если величина скорости равна v, то
?v?=v??, а ускорение а равно
а?=v(d?/dt).
Теперь нам нужно знать ??/?t. Эту величину можно найти так: если в данный момент кривую можно приблизительно заменить окружностью радиусом R, то, поскольку за время ?t частица пройдет расстояние s=v?t, изменение угла равно
??=v(?t/R) или ??/?t=v/R.
Таким образом, как мы уже установили ранее,
a=v2/R. (11.16)
§ 7. Скалярное произведение векторов
Давайте еще немного займемся свойствами векторов. Легко понять, что длина шага в пространстве одинакова во всех координатных системах. Следовательно, если какому–то шагу r соответствуют составляющие х, у, z в одной системе координат и составляющие х', у', z' в другой системе, то расстояние r= |r| одно и то же в обеих системах. Сначала мы, конечно, должны ввести два расстояния,
а затем проверить, что эти обе величины равны. Чтобы не возиться с квадратным корнем, будем сравнивать квадраты расстояний. Мы должны, таким образом, показать, что
x2+у2+ z2=x'2+у'2+ г'2. (11.17)
Подставив в это уравнение определяемые соотношением (11.5) значения ж', у', z', мы увидим, что это действительно так. Значит, кроме уже изученных нами векторных уравнений, существуют еще какие–то соотношения, верные в любой системе координат.
Незаметно мы получили новый тип величин. Мы можем построить функцию х, у и z, называемую скалярной функцией, – величину, которая не имеет направления, и одинакова в обеих системах координат. Из вектора можно построить скаляр. Хорошо бы найти общее правило для этого построения. Собственно говоря, мы уже нашли это правило: надо возвести в квадрат каждую из составляющих вектора и сложить их. Определим теперь новую величину, которую обозначим а•а. Это не вектор, а скаляр; это число, одинаковое во всех координатных системах и определяемое как сумма квадратов трех составляющих вектора:
a•a=a2x+ a2y+a2z. (11.18)
Вы спросите: «В какой системе координат?» Но раз это число не зависит от системы координат, то ответ одинаков в любой системе координат. Мы имеем дело с новым видом величины, с инвариантом, или скаляром, полученным «возведением вектора в квадрат». Если теперь определить, исходя из векторов а и b, величину
a•b=axbx+ayby+ azbz, (11.19)
то можно убедиться, что эта величина совпадает в штрихованной и нештрихованной системах координат. Чтобы доказать это, заметим, что это верно для величин а•а, b•b и с•с, где с=а+b. Сумма квадратов (ax+bx)2+(ay+by)2+(az+bz)2 –инвариант:
(аx+bx)2+(аy+by)2+(аz+bг)2 = (аx'+bx')2 + (ay'+bу')2+(az,+bz')2. (11.20)
Раскроем скобки в обеих сторонах этого уравнения. Перекрестные произведения дадут нам выражения типа (11.19), а суммы квадратов составляющих а и b – выражения (11.18). Инвариантность слагаемых типа (11.18) приводит к инвариантности перекрестных произведений типа (11.19).
Величина а•b называется скалярным произведением двух векторов а и b и имеет много интересных и полезных свойств. Например, легко доказать, что
а• (b+c)=а•b+а•с. (11.21)
Есть еще очень простой геометрический способ вычисления а•b, при котором не надо определять составляющих а и b; просто а•b есть произведение длин векторов а и b на косинус угла между ними. Почему? Предположим, что мы выбрали такую систему координат, в которой вектор а направлен вдоль оси х; в этом случае вектор а имеет единственную ненулевую составляющую ах, которая равна длине вектора а. Таким образом, уравнение (11.19) сводится в этом случае к a•b=axbx, что равно произведению длины вектора а на составляющую вектора b по направлению а, которая в свою очередь равна bcos?, т. е.