Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Шрифт:

Через промежуток времени Dt тело целиком по­вернется на угол Dq, а вместе с ним повернется и наша частица. Хотя расстояние от нее до оси вращения О остается тем же самым, она уже переместится в другую точку, Q. Первое, что хотелось бы знать, это насколько изменятся расстояния х и y. Если обозначить через rдлину ОР, то длина PQ будет равна rDq (просто по определению угла). Тогда изменение расстояния х будет равно проекции rDq на ось х

Dz=-PQsinq =-гDqy/r=-y/Dq. (18.6)

Аналогично,

Dy=xDq. (18.7)

Если тело вращается с угловой скоростью w, то, деля обе части равенства (18.6) и (18.7) на Dt, найдем компоненты скорости частицы

vx=-wx

и vy=wy.(18.8)

Если же нам требуется абсолютная величина скорости, то мы просто пишем

Не удивительно, что абсолютная величина скорости получи­лась равной wr; это же очевидно; ведь полное пройденное рас­стояние равно rDq, а поэтому расстояние, пройденное за 1 сек, будет rDq/Dt, или rw.

Перейдем теперь к рассмотрению динамики вращения. Здесь следует ввести новое понятие — силу. Давайте посмотрим, нельзя ли изобрести нечто, играющее ту же роль, что и сила в линейном движении. Это нечто мы будем называть моментом силы, или просто моментом. Обычно под силой мы понимаем нечто, заставляющее покоящееся тело двигаться, а то, что заставляет тело вращаться, есть «вращающая», или «крутящая», сила; ее мы называем моментом. Таким образом, качественно момент силы — это кручение; но что такое момент силы коли­чественно? Количественную теорию момента можно получить, изучая работу, затраченную на поворот тела. Этот подход очень хорош и для определения силы: если мы знаем, какая требуется работа, чтобы совершить данное перемещение, то знаем и силу. Чтобы продолжить соответствие между угловыми и линейными величинами, мы должны приравнять работу, которая производится при повороте тела на какой-то угол, к произведению момента на этот угол. Другими словами, при таком определении момента теорема о работе имеет абсолютный аналог: работа есть сила на перемещение, или момент на угол. Это сразу говорит нам, что такое момент количественно. Рас­смотрим, например, твердое тело, вращающееся вокруг оси, на которое действуют различные силы. Сконцентрируем сначала наше внимание на одной силе, приложенной к некоторой точке (х, у). Какую работу мы затрачиваем, поворачивая тело на некоторый малый угол Dq? Нетрудно понять, что она равна

DW=FxDx+FyDy. (18.10)

Теперь нужно только подставить выражения (18.6) и (18.7) для Dx; и Dy и получить

DW=(xFy– yFx) Dq, (18.11)

т. е. работа, которую мы проделали, равна углу, на который было повернуто тело, умноженному на какую-то странную комбинацию сил и расстояний. Эта «странная комбинация» и есть момент. Таким образом, определяя изменение работы как момент, умноженный на угол поворота, мы получаем формулу, выражающую момент через силы. (Это понятно. По­скольку момент не является полностью новым понятием, не зависящим от механики Ньютона, то он должен определенным образом выражаться через силу.)

Пусть теперь на тело действует несколько сил. Тогда ра­бота, производимая этими силами, равна сумме работ от каж­дой силы, так что DW будет иметь вид суммы множества членов: по одному для каждой из сил, однако каждый из них пропор­ционален Dq. Эту величину Dq можно вынести за скобку и получить, что работа равна сумме моментов от всех действу­ющих сил, умноженной на Dq. Эту сумму можно назвать пол­ным моментом сил и обозначить t. Как видите, моменты скла­дываются по обычным законам алгебры, однако, как вы узнаете после, это происходит из-за того, что мы ограничиваемся только плоскими вращениями. Эта ситуация напоминает одномерное движение, в котором силы просто складываются алгебраически; ведь все они в этом случае действуют вдоль одной и той же прямой. В трехмерном пространстве все более сложно. Таким образом, для двумерного вращения

Нужно только помнить, что это справедливо лишь для вра­щения вокруг одной оси. Если брать различные оси, то все хiи yiизменятся, соответственно изменяются (обычно) и величины моментов.

Отвлечемся теперь на минуту и заметим, что предыдущий способ введения момента дает очень важный результат для тела, находящегося в равновесии: если сбалансированы все силы, действующие на объект, и перемещающие и вращающие, то нужно, чтобы не только полная сила была равна нулю, но и полный момент, так как при малом перемещении объекта, находящегося в равновесии, никакой работы не производится. Следовательно, из того, что DW=tDq=0, можно заключить, что сумма всех моментов должна быть равна нулю. Таким образом, для равновесия необходимо выполнение двух условий: а) сумма всех сил равна нулю и б) сумма всех моментов тоже равна нулю. Попробуйте доказать сами, что в двумерном случае достаточно равенства нулю суммы моментов сил отно­сительно какой-либо одной оси.

Вернемся теперь к случаю одной силы, действующей на тело, и попытаемся выяснить, что же геометрически означает странное выражение xFy– yFx. На фиг. 18.2 вы видите силу F, приложенную в точке Р.

Фиг. 18.2. Вращающий момент, создаваемый силой.

Когда тело поворачивается на малый угол Dq, то естественно, что произведенная при этом работа равна составляющей в направлении перемещения, умноженной на величину перемещения. Иначе говоря, работает только тангенциальная составляющая силы, которая умножается на расстояние rDq. Поэтому момент равен тангенциальной со­ставляющей силы (перпендикулярной к радиусу), умноженной на радиус. Это хорошо согласуется с нашим первоначальным понятием момента, потому что полностью радиальная сила не может крутить тело. Крутящее действие силы, очевидно, происходит только от той ее части, которая не тянет тело от центра. Она и называется тангенциальной составляющей, Ясно, кроме того, что данная сила закручивает тело тем сильнее, чем дальше от центра она приложена. Попробуйте раскрутить тело давлением прямо на его ось! Таким образом, тот факт, что момент силы пропорционален как радиальному расстоянию, так и тангенциальной составляющей силы, имеет свой смысл,

Существует еще третье, очень интересное выражение для момента силы. Как вы только что узнали, момент силы равен силе, умноженной на радиус и на синус угла а (см. фиг. 18.2), Если теперь продолжить линию действия силы и провести прямую, перпендикулярную к ней, то нетрудно видеть, что длина OS (она часто называется плечом силы) во столько раз короче радиуса, во сколько тангенциальная составляющая силы меньше полной ее величины. Поэтому можно записать, что момент равен произведению величины силы на длину ее плеча.

Мы не знаем точно, откуда произошел термин «момент силы» — по-видимому, от латинского movimentum, что означает способность силы двигать объект (используя какой-либо рычаг), тем более заметную, чем длинней плечо силы. Кстати, в математике слово «момент» означает усреднение с весом, в ка­честве которого взято расстояние до оси.

§ 3. Момент количества движения

Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется пол­ным импульсом системы частиц, так и момент силы равен ско­рости изменения некоторой величины L, называемой моментом количества движения, или угловым моментом группы частиц. Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой mи осью О изображена на фиг. 18.3.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря