Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Шрифт:
Итак, согласно высказанной нами идее, если происходит некое событие, например частица внезапно распадается в какой-то пространственно-временной точке (х, t) на две, то, если это для чего-нибудь нужно, поворотом осей можно получить значения х и t в новой системе (фиг. 17.2, а). Но это не так: ведь уравнение (17.1) не совпадает с преобразованием (17.2), в них по-разному расставлены знаки, в одном встречаются sin9 и cos0, а в другом — некоторые алгебраические
Фиг. 17.2. Два изображения распада частицы. а — неверное; 6 — верное.
величины. (Вообще-то иногда алгебраические величины выражаются через косинус и синус, но в данном случае это невозможно.) А все-таки эти выражения очень похожи. Как мы с вами увидим, нельзя
§ 2. Пространственно-временные интервалы
Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеобразная. Если это представление о геометрии правильно, то должны существовать такие функции координат и времени, которые не зависят от системы координат. К примеру, при обычных вращениях, если взять две точки, одну для простоты в начале координат обеих систем, а другую в любом другом месте, то в обеих системах координат расстояние между точками будет одинаково. Это первое свойство точек, которое не зависит от частного способа измерения: квадрат расстояния, или x2+y2+z2, не меняется при поворотах. А как с пространством-временем? Не трудно показать, что и здесь есть нечто, не зависящее от способа измерения, а именно комбинация c2t2– х2– у2– z2одинакова до и после преобразования
с2t'2– х'2– у'2– z'2=c2t2– х2– y2– z2. (17.3)
Поэтому эта величина, подобно расстоянию, «реальна» в том смысле, который был придан этому слову выше; ее называют интервалом между двумя пространственно-временными точками, одна из которых в этом случае совпадает с началом координат. (Точнее говоря, это не интервал, а квадрат интервала, точно так же как и х2+у2+z2 — квадрат расстояния.) Это название подчеркивает различие в геометриях; обратите внимание, что в формуле присутствует с, а некоторые знаки обращены.
Давайте избавимся от с, оно нам не нужно, если мы хотим иметь удобное пространство, в котором х и t можно переставлять. Представьте, к какой путанице приведет измерение ширины по углу, под которым виден предмет, а толщины — по сокращению мышц при фиксировании глаза на предмет и выражение толщины в метрах, а ширины в радианах. При преобразованиях уравнений типа (17.2) тогда получится страшная неразбериха и ни за что не удастся разглядеть всю простоту и ясность предмета по той технической причине, что одно и то же будет измеряться двумя различными единицами. С помощью уравнений (17.1) и (17.3) природа говорит нам, что время равнозначно пространству; время становится пространством; их надо измерять в одинаковых единицах. Какое расстояние измеряет секунда? Из уравнения (17.3) это легко понять: секунда — это 3·108 м, расстояние, которое свет проходит за 1 сек. Иначе говоря, если бы расстояния и время мы измеряли в одинаковых единицах (секундах), то единицей длины было бы 3·108 м и уравнения упростились бы. А другой способ уравнять единицы — это измерять время в метрах. Чему равен метр времени? Метр времени — это время, за какое свет проходит расстояние в 1 .м, т. е. (l/3) ·10– 8 сек, или 3,3 миллиардных доли секунды! Иными словами, нам нужно записать все уравнения в системе единиц, где с=1. Когда время и пространство станут измеряться в одинаковых единицах, уравнения, естественно, упростятся;
Может быть, вы сомневаетесь в законности этого или вас «пугает», что, положив с=1, вы не сможете вернуться к правильным уравнениям? Напротив, без с их гораздо легче запомнить, а с легко поставить на нужные места, если присмотреться к размерностям. Скажем, в Ц(1—u2) мы видим, что из неименованного числа 1 приходится вычитать именованное (квадрат скорости u2); естественно, этот квадрат нужно разделить на с2, чтобы сделать вычитаемое безразмерным. Таким путем можно расставить с, где полагается.
Очень интересно различие между пространством-временем и обыкновенным пространством, различие между интервалом и расстоянием. Посмотрите на формулу (17.5). Если два события произошли в какой-то системе координат в одно и то же время, по в разных точках пространства, то, поместив начало координат в точку, изображающую одно из событий, мы получим, что t=0, а, например, х№0. Значит, квадрат интервала получится отрицательным, а сам интервал — мнимым (корень квадратный из отрицательного числа). Интервалы в этой теории бывают и действительные, и мнимые, потому что их квадраты могут быть и положительными, и отрицательными (в отличие от расстояния, квадрат которого бывает только положительным). Когда интервал мнимый, говорят, что интервал между двумя событиями (точками) пространственно-подобный (а не мнимый), потому что такой интервал получался бы всегда, если бы весь мир застыл на одном времени. С другой стороны, если два предмета в данной системе координат попадают в одно и то же место в разные моменты времени, тогда t№0, a x=y=z=0 и квадрат интервала положителен; это называется времени-подобным интервалом. Далее, если провести на диаграмме пространства-времени две прямые под углом 45° (в четырех измерениях они обратятся в «конус», называемый световым), то точки на этих прямых будут отделены от начала координат нулевым интервалом. Куда бы из начала координат ни распространялся свет, все равно x2+y2+z2=c2t2, т. е. интервал между событием прихода света в любую точку и началом всегда равен нулю [как легко видеть из (17.5)]. Кстати, мы сейчас доказали, что скорость света в любых системах координат одинакова: ведь если интервал в обеих системах одинаков, то, будучи равен нулю в одной из них, он равен нулю и в другой, и квадрат скорости света — отношение x'2+y'2+z'2к t'2— опять равен с2.
Сказать, что скорость распространения света — инвариант,— это все равно, что сказать, что интервал равен нулю.
§ 3. Прошедшее, настоящее, будущее
Пространственно-временную область, окружающую данную точку пространства-времени, можно разделить на три области, как показано на фиг. 17.3.
Фиг. 17.3. Область пространства-времени, окружающая начало координат.
В одной из них интервалы пространственно-подобны, в остальных двух — времени-подобны. Эти три области, на которые распадается окружающее точку пространство-время, в физическом отношении связаны с самой точкой очень интересно.
Из области 2 физический объект или сигнал, двигаясь со скоростью, меньшей скорости света, может прийти в точку О. Поэтому события в этой области могут воздействовать на событие в точке (9, могут влиять на него из прошлого (t<0). Действительно, предмет в точке Р на оси отрицательных t оказывается точно в «прошлом» по отношению к точке О; Р — это та же пространственно-временная точка О, но в более ранний момент времени. Что в ней когда-то случилось, теперь сказывается на точке О. (К сожалению, именно такова наша жизнь.) Другой предмет из Q попадет в О, двигаясь с определенной скоростью, меньшей, чем с; значит, если бы этот предмет двигался в космическом корабле, он мог бы тоже оказаться прошлым той же точки О пространства-времени. Это означает, что в какой-то другой системе координат ось времени могла бы пройти через О и Q. Таким образом, все точки области 2 оказываются по отношению к О в «прошлом»; все, что в этой области происходит, может сказаться на О. Поэтому область 2 можно назвать воздействующим прошлым; это геометрическое место всех событий, которые хоть каким-то образом могут повлиять на событие в точке О.
А зато область 3 — это та область, на которую в свою очередь могут повлиять события в О; в тела, расположенные внутри области 3, можно «попасть пулей», скорость которой меньше скорости света. Это тот мир, чье будущее в наших руках (если мы сами находимся в точке О); область 3 можно назвать воздействуемым будущим. Остальное пространство-время (область 1) интересно тем, что на события в нем из точки О влиять нельзя и, обратно, ничто, происходящее в этой области, никак не может повлиять на положение в точке О, потому что ничто не может обогнать свет. Конечно, если что-то произойдет в точке R, это может сказаться позднее; если, например, Солнце «сию минуту» взорвется, то мы узнаем об этом лишь через 8 минут, и раньше этого времени взрыв никак отразиться на нас не может.