Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Шрифт:
И наконец, теория относительности подсказала нам еще кое-что; может быть, это был чисто технический совет, но он оказался чрезвычайно полезным при изучении других физических законов. Совет состоял в том, что надо обращать внимание на симметрию законов, или, более определенно, искать способы, с помощью которых законы можно преобразовать, сохраняя при этом их форму. Когда мы обсуждали теорию векторов, мы отмечали, что основные законы движения не меняются, когда мы особым образом изменяем пространственные и временные переменные (пользуемся преобразованием Лоренца). Идея изучать операции, при которых основные законы не меняются, оказалась и впрямь очень полезной.
§ 2. Парадокс близнецов
Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «парадокс» — парадокс близнецов, скажем, Петера
Но ведь чтобы встретиться и помериться годами, Пауль должен либо остановиться в конце путешествия и сравнить часы, либо, еще проще, вернуться. А возвратиться может только тот, кто двигался. И он знает о том, что двигался, потому что ему пришлось повернуть, а при повороте на корабле произошло много необычных вещей: заработали ракеты, предметы скатились к одной стенке и т. д. А Петер ничего этого не испытал.
Поэтому можно высказать такое правило: тот, кто почувствовал ускорение, кто увидел, как вещи скатывались к стенке, и т. д.,— тот и окажется моложе. Разница между братьями имеет «абсолютный» смысл, и все это вполне правильно. Когда мы обсуждали долгую жизнь движущегося мю-мезона, в качестве примера мы пользовались его прямолинейным движением сквозь атмосферу. Но можно породить мю-мезоны и в лаборатории и заставить с помощью магнита их двигаться по кругу. И даже при таком ускоренном движении они проживут дольше, причем столько же, сколько и при прямолинейном движении с этой скоростью. Можно было бы попытаться разрешить парадокс опытным путем: сравнить покоящийся мю-мезон с закрученным по кругу. Несомненно, окажется, что закрученный мю-мезон проживет дольше. Такого опыта еще никто не ставил, но он и не нужен, потому что и так все прекрасно согласуется. Конечно, те, кто настаивает на том, что каждый отдельный факт должен быть непосредственно проверен, этим не удовлетворятся. А мы все же уверенно беремся предсказать результат опыта, в котором Пауль кружится по замкнутому кругу.
§ 3. Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относительно друг друга, различны.
Правильный закон преобразований (Лоренца) таков:
Эти уравнения отвечают сравнительно простому случаю, когда наблюдатели движутся относительно друг друга вдоль общей оси х. Конечно, мыслимы и другие направления движения, но самое общее преобразование Лоренца выглядит довольно сложно: в нем перемешаны все четыре числа. Мы и впредь будем пользоваться этой простой формулой, так как она содержит в себе все существенные черты теории относительности.
Рассмотрим теперь дальнейшие следствия этого преобразования. Прежде всего интересно разрешить эти уравнения относительно х, у, z, t. Это система четырех линейных уравнений для четырех неизвестных, и их можно решить — выразить х, у, z, t через х', у', z', t'. Результат этот потому интересен, что он говорит нам, как «покоящаяся» система координат выглядит с точки зрения «движущейся». Ясно, что из-за относительности движения и постоянства скорости тот, кто «движется», может, если пожелает, счесть себя неподвижным, другого — движущимся. А поскольку он движется в обратную сторону, то получит то же преобразование, но с противоположным знаком у скорости. Это в точности то, что дает и прямое решение системы, так что все сходится. Вот если бы не сошлось, было бы от чего встревожиться!
Теперь займемся интересным вопросом о сложении скоростей в теории относительности. Напомним, что первоначально загадка состояла в том, что свет проходит 300 000 км/сек во всех системах, даже если они движутся друг относительно друга. Это — частный случай более общей задачи. Приведем пример. Пусть предмет внутри космического корабля движется вперед со скоростью 200 000 км/сек; скорость самого корабля тоже 200 000 км/сек. С какой скоростью перемещается предмет с точки зрения внешнего наблюдателя? Хочется сказать: 400 000 км/сек, но эта цифра уж больно подозрительна: получается скорость большая, чем скорость света! Разве можно себе это представить?
Общая постановка задачи такова. Пусть скорость тела внутри корабля равна v (с точки зрения наблюдателя на корабле), а сам корабль имеет скорость и по отношению к Земле. Мы желаем знать, с какой скоростью vxэто тело движется с точки зрения земного наблюдателя. Впрочем, это тоже не самый общий случай, потому что движение происходит в направлении х. Могут быть формулы для преобразования скоростей в направлении у или в любом другом; если они будут нужны, их всегда можно вывести. Внутри корабля скорость тела равна vx' . Это значит, что перемещение х' равно скорости, умноженной на время:
x'=vx·'t'. (16.3)
Остается только подсчитать, какие у тела значения х и t с точки зрения внешнего наблюдателя, если х' и t' связаны соотношением (16.3). Подставим (16.3) в (16.2) и получим
Но здесь х выражено через t'. А скорость с точки зрения внешнего наблюдателя — это «его» расстояние, деленное на «его» время, а не на время другого наблюдателя! Значит, надо и время подсчитать с его позиций
А теперь разделим х на t. Квадратные корни сократятся, останется же
Это и есть искомый закон: суммарная скорость не равна сумме скоростей (это привело бы ко всяким несообразностям), но «подправлена» знаменателем 1+uv/c2.
Что же теперь будет получаться? Пусть ваша скорость внутри корабля равна половине скорости света, а скорость корабля тоже равна половине скорости света. Значит, и u равно 1/2с, и v равно 1/2c, но в знаменателе uv равно 1/4, так что