Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 2. Пространство. Время. Движение
Шрифт:

Однако с точки зрения современного физика это случится почти наверняка; в противном случае можно было бы по бы­строте развития опухоли судить о скорости корабля!

Очень интересным примером замедления времени при дви­жении снабжают нас мю-мезоны (мюоны) — частицы, которые в среднем через 2,2·10– 6 сек самопроизвольно распадаются. Они приходят на Землю с космическими лучами, но могут быть созданы и искусственно в лаборатории. Часть космических мюонов распадается еще на большой высоте, а остальные — только после того, как остановятся в веществе. Ясно, что при таком кратком времени жизни мюон не может пройти больше 600 м, даже если он будет двигаться со скоростью света. Но хотя мюоны возникают на верхних границах атмосферы, при­мерно на высоте 10 км и выше, их все-таки обнаруживают в земных лабораториях среди космических лучей. Как это может быть? Ответ состоит в том, что разные мюоны летят с различными скоростями, иногда довольно близкими к скорости света. С их собственной

точки зрения они живут всего лишь око­ло 2 мксек, с нашей же — их жизненный путь несравненно более долог, достаточно долог, чтобы достигнуть поверхности Земли. Их жизнь удлиняется в 1/Ц(1-u2/c2)раз. Среднее время жизни мюонов разных скоростей было точно измерено, причем полу­ченное значение хорошо согласуется с формулой.

Мы не знаем, почему мезон распадается и каков его внут­ренний механизм, но зато мы знаем, что его поведение удов­летворяет принципу относительности. Тем и полезен этот принцип — он позволяет делать предсказания даже о тех вещах, о которых другим путем мы мало чего узнаем. К при­меру, еще не имея никакого представления о причинах распада мезона, мы все же можем предсказать, что если его скорость со­ставит 9/10 скорости света, то кажущаяся продолжительность отведенного ему срока жизни будет равна 2,2 · 10– 6/Ц(1-92/102) сек. И это предсказание оправдывается. Правда, неплохо?

§ 5. Лоренцево сокращение

Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами S и S', или соответственно системами Джо и Мика. Мы уже отметили, что первое уравнение основывается на предположении Лоренца о том, что по направлению х все тела сжимаются. Как же можно доказать, что такое сокращение действительно бывает? Мы уже понимаем, что в опыте Майкельсона — Морли по принципу относительности поперечное плечо ВС не может сократиться; в то же время нулевой результат опыта требует,

чтобы времена были равны. Чтобы получился такой результат, приходится допустить, что продольное плечо BE кажется сжатым в отношении Ц(1-и22). Что означает это сокращение на языке Джо и Мика? Положим, что Мик, двигаясь с системой S' в направлении х', измеряет метровой линейкой координату х' в некоторой точке. Он прикладывает линейку х' раз и ду­мает, что расстояние равно х' метрам. С точки же зрения Джо, (в системе S) линейка у Мика в руках укорочена, а «на самом деле» отмеренное им расстояние равно x'Ц(1-u22) метров. Поэтому если система S' удалилась от системы S на расстояние ut, то наблюдатель в системе S должен сказать, что эта точка (в его координатах) удалена от начала на x=x'Ц(1-u2/c2)+ut, или

Это и есть первое уравнение из преобразований Лоренца.

§ 6. Одновременность

Подобным же образом из-за различия в масштабах времени появляется и знаменатель в уравнении (15.Зг) в преобразо­ваниях Лоренца. Самое интересное в этом уравнении — это новый и неожиданный член в числителе, член ux/с2. В чем его смысл? Внимательно вдумавшись в положение вещей, можно понять, что события, происходящие, по мнению Мика (на­блюдателя в системе S'), в разных местах одновременно, с точки зрения Джо (в системе S), вовсе не одновременны. Когда одно событие случилось в точке x1в момент t0, а другое — в точке х2в тот же момент t0, то соответствующие моменты t1 и t2 отличаются на

Это явление можно назвать «нарушением одновременности удаленных событий». Чтобы пояснить его, рассмотрим сле­дующий опыт.

Пусть человек, движущийся в космическом корабле (система S'), установил в двух концах корабля часы. Он хочет знать, одинаково ли они идут. Как синхронизовать ход часов? Это можно сделать по-разному. Вот один из способов, он почти не требует вычислений. Расположимся как раз где-то посредине между часами. Из этой точки пошлем в обе стороны световые сигналы. Они будут двигаться в обоих направлениях с оди­наковой скоростью и достигнут обоих часов в одно и то же время. Вот этот-то одновременный приход сигналов и можно применить для согласования хода. Положим, что человек в S' таким способом согласует ход часов. Посмотрим, согласится ли наблюдатель в системе S, что эти часы идут одинаково. Космонавт в системе S' имеет право верить, что их ход оди­наков; ведь он не знает, что он движется. Но наблюдатель в системе S сразу рассудит, что раз корабль движется, то часы на носу корабля удалились от светового сигнала и свету при­шлось пройти больше половины длины корабля, прежде чем он достиг часов; часы на корме, наоборот, двигались к све­товому сигналу — значит, его путь сократился. Поэтому сигнал сперва дошел до часов на корме, хотя космонавту в системе S' показалось, что сигналы достигли обоих часов одновременно. Итак, выходит, что когда космонавт считает, что события в двух местах корабля произошли одновременно (при одном и том же значении t'в его системе координат), то в другой системе координат одинаковым t' отвечают разные значения t!

§ 7. Четырехвекторы

Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили о вращении координат. Тогда мы получили

т. е. новое х' перемешивает старые х и y, а у' тоже их переме­шивает. Подобным же образом в преобразовании Лоренца новое х' есть смесь старых х и t, а новое t'смесь t и х. Зна­чит, преобразование Лоренца похоже на вращение, но «вра­щение» в пространстве и времени. Это весьма странное поня­тие. Проверить аналогию с вращением можно, вычислив ве­личину

В этом уравнении три первых члена в каждой стороне пред­ставляют собой в трехмерной геометрии квадрат расстояния между точкой и началом координат (сферу). Он не меняется (остается инвариантным), несмотря на вращение осей коор­динат. Аналогично, уравнение (15.9) свидетельствует о том, что существует определенная комбинация координат и вре­мени, которая остается инвариантной при преобразовании Лоренца, Значит, имеется полная аналогия с вращением; аналогия эта такого рода, что векторы, т. е. величины, составленные из «компонент», преобразуемых так же, как и коорди­наты, оказываются полезными и в теории относительности.

Итак, мы расширим понятие вектора. Пока он у нас мог иметь только пространственные компоненты. Теперь включим в это понятие и временную компоненту, т. е. мы ожидаем, что существуют векторы с четырьмя компонентами: три из них похожи на компоненты обычного вектора, а к ним привязана четвертая — аналог времени.

В следующих главах мы проанализируем это понятие. Мы увидим, что если идеи этого параграфа приложить к импульсу, то преобразование даст три пространственные составляющие, подобные обычным компонентам импульса, и четвертую ком­поненту — временную часть (которая есть не что иное, как энергия).

§ 8. Релятивистская динамика

Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не объяснили, как получить измененную формулу для т, уравнение (15.1). Это будет сделано в следу­ющей главе.] Изучение следствий формулы Эйнштейна для массы m в механике Ньютона мы начнем с закона силы. Сила есть быстрота изменения импульса, т. е.

Поделиться:
Популярные книги

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке