Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

Т(дP/дT)V– Р =0. (45.10)

Уравнение (45.10) — это дифференциальное уравнение, и оно кое-что расскажет нам о Р. Мы расправимся с частной произ­водной так: поскольку частная производная вычислена при постоянном V, можно заменить частную производную обычной, только надо помнить, что все это делается «при постоянном V». Уравнение (45.10) тогда принимает вид

Т=DP/DT-P=0 (при постоянном V), (45.11)

интегрирование не составит для нас труда, и мы получим lnP=lnТ+const (при постоянном V),

P=constXT (при постоянном V). (45.12)

Мы знаем, что давление идеального газа равно

Р=RT/V. (45.13)

Это

соотношение совместимо с (45.12), потому что R и V — постоянные. Но зачем же мы мучились, решая эти уравнения? Ведь результат-то был уже известен. Потому что мы пользова­лись двумя независимыми определениями температуры! Однаж­ды мы предположили, что кинетическая энергия молекул про­порциональна температуре. Это предположение привело нас к температурной шкале, которую мы назвали шкалой идеаль­ного газа. Температура Т в уравнении (45.13) отсчитывается по газовой шкале. Мы называли отсчитанную по газовой шкале температуру кинетической температурой. Потом мы определили температуру иначе, и это определение вообще не нуждалось ни в каком веществе. Исходя из второго закона, мы определили то, что можно назвать «абсолютной термодинамической темпера­турой» Т; она появляется в уравнении (45.12). Здесь мы только доказали, что давление идеального газа (идеальный газ для нас нечто, чья внутренняя энергия не зависит от объема) пропор­ционально абсолютной термодинамической температуре. Мы, кроме того, знаем, что давление пропорционально температуре, измеренной по газовой шкале. Таким образом, можно заклю­чить, что кинетическая температура пропорциональна «абсо­лютной термодинамической температуре». Это, конечно, озна­чает, что если бы мы были благоразумны, то показания обеих шкал могли бы всегда жить в согласии. В конце концов эти шкалы можно выбрать так, что они совпадут; постоянную про­порциональности можно положить равной единице. Очень долго люди сами себе создавали трудности, но наконец прев­ратили две шкалы в одну!

§ 3. Уравнение Клаузиуса— Клайперона

Испарение жидкости — это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом.

Естественно задать себе вопрос: как зависит давление от объе­ма, если температура остается постоянной? Иначе говоря, мы хотим начертить изотермические линии на диаграмме Р—V. Вещество в цилиндре — это далеко не идеальный газ, с которым мы имели дело; теперь это жидкость или пар, а может быть, и то и другое вместе. Если сжать вещество достаточно сильно, то оно начнет превращаться в жидкость. Если мы будем увеличи­вать давление, объем изменится очень мало, а наши изотермы при уменьшении объема пойдут резко вверх, как это показано в левой части фиг. 45.3.

Фиг. 45.3. Изотермы конденси­рующегося пара.

Пар сжимается в цилиндре. Слева — все вещество превратилось в жидкость; справа — вся жидкость испарилась; в середине — в цилиндре сосуществуют жидкость и пар.

Если увеличивать объем, выдвигая поршень из цилиндра, давление будет падать, пока мы не достигнем точки кипения жидкости и в цилиндре появится пар. Дальнейшее вытягивание поршня приведет к более сильному испарению. Когда цилиндр заполнен частично паром, а частично жидкостью, то между ними устанавливается равновесие — жидкость испаряется, пар кон­денсируется, и скорости этих процессов равны. Если предоста­вить пару больший объем, то, чтобы удержать прежнее давле­ние, понадобится больше пара. Поэтому, хоть жидкость все испаряется, давление остается прежним. Вдоль плоской части кривой на фиг. 45.3 давление не изменяется, это давление назы­вается давлением пара при температуре Т. Если объем все увеличивается, наступит момент, когда запасы жидкости иссяк­нут. В такой ситуации давление падает при увеличении объема, ведь теперь мы имеем дело с обычным газом; это изображено в правой части диаграммы Р—V. Нижняя кривая на фиг. 45.3— это изотермическая кривая при более низкой температуре Т—DT. Давление жидкости в этом случае немного меньше, потому что с ростом температуры жидкости расширяются (не все жидкости, вода около точки замерзания поступает наоборот), а давление пара при уменьшении температуры, конечно, падает.

Из двух изотерм можно снова построить цикл, соединив концы их плоских участков (скажем, адиабатами), как это показано на фиг. 45.4. Небольшая зазубрина в нижнем правом углу фигуры несущественна, и мы просто забудем о ней. Исполь­зуем аргументы Карно, которые показывают, как связано тепло, подведенное к жидкости для превращения ее в пар, с работой, совершаемой веществом при обходе цикла. Пусть L—это тепло, необходимое для испарения жидкости в цилиндре. Вспом­ним, как мы рассуждали при выводе уравнения (45.5), и не­медленно скажем, что L(DT/T) равно работе, совершенной ве­ществом. Как и раньше, работа вещества равна площади, за­ключенной внутри цикла. Эта площадь приблизительно равна DP(VGVL), где DР — разность давлений пара при температурах Т и Т—DT, VGобъем газа, a VLобъем жидкости. Оба объе­ма надо измерять при давлении, равном давлению пара.

Сравнивая два выражения для работы, мы получаем L(DT/T)= DP(VG– VL), или

Уравнение (45.14) связывает скорость изменения давления пара с температурой и количеством тепла, необходимым для испа­рения жидкости. Хотя вывел его Карно, называется оно урав­нением Клаузиуса — Клайперона.

Сравним уравнение (45.14) с результатом, следующим из ки­нетической теории. Обычно VG гораздо больше VL. Поэтому VG– VL»VG=RT/P на моль. Если еще предположить, что L — не зависящая от температуры постоянная (хотя это не очень хорошее приближение), то мы получим dP/8T=L/(RT2P). Вот решение этого дифференциального уравнения:

P=const·eL/RT. (45.15)

Надо выяснить, в каких отношениях находится это выраже­ние с полученной ранее с помощью кинетической теории за­висимостью давления от температуры. Кинетическая теория говорит, хотя и очень неопределенно, что число молекул пара над жидкостью примерно равно

где UG—ULразность отнесенных к молю внутренних энергий газа и жидкости. Термодинамическое уравнение (45.15) и кине­тическое уравнение (45.16) очень похожи, потому что давление равно nkT, но все-таки это разные уравнения. Однако их можно сделать одинаковыми, если заменить старое предположение L=const предположением о том, что L—UG=const. Если предположить, что L—UGне зависящая от температуры постоянная, то соображения, из которых ранее следовало (45.15), при­ведут теперь к уравнению (45.16).

Это сравнение показывает преимущества и недостатки тер­модинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть мо­жет, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о прев­ращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похо­жими на кривые фиг. 45.3 и 45.4.

Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром.

Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—DT пар расширяется адиаба­тически.

Вводя скрытую теплоту плав­ления М/моль, мы получим формулу, аналогичную уравне­нию (45.14): (дPпл/дT)V=M/[T(VL– VS)]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое пре­имущество. Уравнение (45.14) — это всего лишь дифферен­циальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения ока­зываются самым мощным средством. Когда же картина упро­щается настолько, что можно ее проанализировать теоретиче­ски, то лучше сначала попробовать выжать из этого анализа как можно больше.

Поделиться:
Популярные книги

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Дайте поспать!

Матисов Павел
1. Вечный Сон
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать!

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Я не Монте-Кристо

Тоцка Тала
Любовные романы:
современные любовные романы
5.57
рейтинг книги
Я не Монте-Кристо