Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интере­суясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т1, Т2и Т3. Одна машина поглощает тепло Q1при температуре T1, производит работу W13и отдает тепло Q3при температуре T3(фиг. 44.8).

Фиг. 44.8. Спаренные машины 1 и 2 эквивалентны машине 3.

Другая машина работает при перепаде температур t2и Т3. Предположим,

что эта машина устроена так, что она поглощает то же тепло Q3при температуре Т3и отдает тепло Q2. Тогда нам придется затратить работу W32, ведь мы заставили машину работать в обратном направлении. Цикл первой машины заклю­чается в поглощении тепла Q1 и выделении тепла Q3при тем­пературе Т3. Вторая машина в это время забирает из резер­вуара то же самое тепло Q3при температуре T3и отдает его в резервуар с температурой Т2. Таким образом, чистый резуль­тат цикла этих спаренных машин состоит в изъятии тепла Qlпри температуре Т1и выделении тепла Q2 при температуре T2. Эти машины эквивалентны третьей, которая поглощает тепло Qlпри температуре Т1, совершает работу W12и выделяет тепло Q2 при температуре Т2. Действительно, исходя из первого за­кона, можно сразу же показать, что W12=W13W32:

W13– W32=(Q1– Q3)=(Q2– Q3)=Q1– Q2=W12 . (44.8)

Теперь можно получить закон, связывающий коэффициенты полезного действия машин. Ведь ясно, что между эффективностями машин, работающих при перепаде температур Т2– T3, t2– Т3и Т1– Т2, должны существовать определенные соотно­шения.

Сформулируем пояснее наши аргументы. Мы убедились, что всегда можем связать тепло, поглощенное при температуре T1 и тепло, выделенное при температуре T2, определив тепло, выделенное при какой-то другой температуре T3. Это значит, что мы можем описать все свойства машины, если введем стан­дартную температуру и будем анализировать все процессы с помощью именно такой стандартной температуры. Иначе говоря, если мы знаем коэффициент полезного действия машины, рабо­тающей между температурой Т и какой-то стандартной темпе­ратурой, то сможем вычислить коэффициент полезного действия машины, работающей при любом перепаде температур. Ведь мы рассматриваем только обратимые машины, поэтому ничто не мешает нам спуститься от начальной температуры к стандарт­ной, а потом снова вернуться к конечной температуре. Примем температуру в один градус за стандартную. Для обозначения выделяемого при стандартной температуре тепла используем особый символ Qs. Это значит, что если машина поглощает при температуре Т тепло Q, то при температуре в один градус она выделяет тепло QS. Если какая-то машина, поглощая тепло Q1 при T1, выделяет тепло QS при температуре в один градус, а другая машина, поглотив тепло Q2 при Т2, выделяет то же самое тепло QS при температуре в один градус, то машина, поглощающая Q1 при Т1 , должна при температуре Т2 выделять тепло Q2. Мы уже доказали это, рассмотрев три машины, ра­ботающие при трех температурах. Таким образом, для полного описания работы машин нам остается узнать совсем немного. Мы должны выяснить, сколько тепла Q1должна поглотить ма­шина при температуре T1 , чтобы выделить при единичной тем­пературе тепло QS. Конечно, между теплом Q и температурой Т существует зависимость. Легко понять, что тепло должно воз­растать при возрастании температуры, ведь мы знаем, что если заставить работать машину в обратном направлении, то при более высокой температуре она отдает тепло. Легко также по­нять, что тепло Q1 должно быть пропорционально QS. Таким образом, наш великий закон выглядит примерно так: Каждому количеству тепла QS, выделенного при температуре в один градус, соответствует количество тепла, поглощенного машиной при температуре Т, равное QS, умноженному на не­которую возрастающую функцию Q температуры:

Q=QSf(T). (44.9)

§ 5. Термодинамическая температура

Пока мы не будем делать попыток выразить эту возрастаю­щую функцию в терминах делений знакомого нам ртутного гра­дусника, а взамен определим новую температурную шкалу. Когда-то «температура» определялась столь же произвольно. Мерой температуры служили метки, нанесенные на равных расстояниях на стенках трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртут­ным термометром и обнаружили, что градусные расстояния уже не одинаковы. Сейчас мы можем дать определение температуры, не зависящее от каких-либо частных свойств вещества. Для этого мы используем функцию f(T), которая не зависит ни от одного устройства, потому что эффективность обратимых машин не зависит от их рабочего вещества. Поскольку найденная нами функция возрастает с температурой, то мы можем считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Для этого надо только договориться, что

Q=QST, (44.10)

а

QS=S·1°. (44.11)

Это означает, что теперь мы можем найти температуру тела, определив количество тепла, которое поглощается обратимой машиной, работающей в интервале между температурой тела и температурой в один градус (фиг. 44.9)

Фиг. 44.9. Абсолютная термо­динамическая температура.

Если машина забирает из котла в семь раз больше тепла, нежели поступает в одно­градусный конденсор, то температура котла равна семи граду­сам и т. д. Таким образом, измеряя количество тепла, погло­щаемого при разных температурах, мы определяем температуру. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств ве­щества. Теперь мы будем пользоваться исключительно этим определением температуры.

Теперь нам ясно, что если у нас имеются две машины, из коих одна работает при перепаде температур Т1и один градус, а другая — T2 и один градус, и обе они выделяют при единичной температуре одинаковое количество тепла, то поглощаемое ими тепло должно удовлетворять соотношению

Q1/T1=S=Q2/T2. (44.12)

Но это означает, что если какая-нибудь обратимая машина по­глощает тепло q1при температуре Т1, а выделяет тепло Q2 при температуре Т2, то отношение Q1к T1 равно отношению Q2 к T2. Это справедливо для любой обратимой машины. Все, что будет дальше, содержится в этом соотношении: это центр тер­модинамической науки.

Но если это все, что есть в термодинамике, то почему же ее считают такой трудной наукой? А попробуйте описать поведение какого-нибудь вещества, если вам даже заранее известно, что масса вещества все время постоянна. В этом случае состояние вещества в любой момент времени определяется его температу­рой и объемом. Если известны температура и объем вещества, а также зависимость давления от объема и температуры, то можно узнать и внутреннюю энергию. Но кто-нибудь скажет: «А я хочу поступить иначе. Дайте мне температуру и давление и я скажу вам, каков объем. Я могу считать объем функцией температуры и давления и искать зависимость внутренней энер­гии именно от этих переменных». Трудности термодинамики связаны именно с тем, что каждый может подойти к задаче с того конца, с какого вздумает. Нужно только сесть и выбрать опре­деленные переменные, а потом уж твердо стоять на своем, и все станет легко и просто.

Поделиться:
Популярные книги

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Рухнувший мир

Vector
2. Студент
Фантастика:
фэнтези
5.25
рейтинг книги
Рухнувший мир

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4