Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:
Вся термодинамика сводится примерно к таким рассуждениям: раз резина при высокой температуре «сильнее», чем при низкой, то с помощью тепла можно совершать самые разнообразные работы, скажем подымать грузы и передвигать их на новое место. И действительно, мы уже убедились, что нагретая резина способна поднимать тяжести. С изучения возможности использования тепла для совершения работы и начинается термодинамика. Можно ли построить машину, в которой используются тепловые свойства резины? Да, только выглядеть она будет глуповато. Для этого можно немного усовершенствовать велосипедное колесо, вставив туда резиновые спицы (фиг. 44.2).
Фиг. 44.2. Тепловая машина с резиновыми спицами.
Если с помощью двух ламп накаливания нагреть резину на одной стороне колеса, то она станет «сильнее», чем не нагретая резина на другой стороне. Центр тяжести колеса сдвинется
Собственно говоря, термодинамика ведет свое начало с работ знаменитого инженера Сади Карно, который желал построить наилучшую и наиболее экономичную машину. Это один из немногих замечательных случаев, когда инженер заложил основы физической теории. На память приходит еще один пример, но уже сравнительно недавний — это анализ теории информации, сделанный Клодом Шенноном. Кстати, эти вопросы тесно связаны.
В паровой машине тепло используется для кипячения воды. Образующийся пар, расширяясь, толкает поршень, а поршень крутит маховик. Итак, пар вытолкнул поршень до отказа — что дальше? Эта порция пара свою работу выполнила, однако самое неразумное было бы закончить цикл выпуском пара в атмосферу, тогда к паровому котлу придется вновь подводить воду. Дешевле, а значит, и эффективнее отводить пар в другой сосуд, где он будет конденсироваться холодной водой, и образующуюся при этом воду можно будет снова вернуть в паровой котел, обеспечив непрерывную циркуляцию. Таким образом, паровая машина поглощает тепло и превращает его в работу. А может быть, лучше залить котел спиртом? Какими свойствами должно обладать вещество, чтобы обеспечить наилучшую работу машины? Этот вопрос задавал себе Карно и, размышляя таким образом, как мы уже сказали, попутно открыл соотношение очень общего типа.
Все результаты термодинамики содержатся в нескольких предельно простых утверждениях, называемых законами термодинамики. Во времена Карно первый закон термодинамики — закон сохранения энергии —был еще не известен. Однако аргументы были сформулированы Карно так точно, что они оказались правильными, хотя первый закон тогда не был еще открыт! Немного позже Клаузиус привел более простой вывод, который понять оказалось легче, чем очень тонкие рассуждения Карно. Но Клаузиус исходил из предположения, что сохраняется не полная энергия, а теплота; так считала в то время калорическая теория, которая впоследствии была вообще отвергнута как неверная. Поэтому часто говорят, что аргументы Карно были ложными. На самом же деле логика Карно безукоризненна. Неверно только упрощенное толкование этих аргументов Клаузиусом, а именно с ним все обычно знакомятся.
Так случилось, что так называемый второй закон термодинамики был открыт Карно раньше первого закона! Было бы очень интересно привести здесь аргументы Карно, не опирающиеся на первый закон. Но придется отказаться от этого, потому что мы изучаем физику, а не историю. С самого начала будем пользоваться первым законом, хотя многое можно было бы сделать и без него.
Сначала сформулируем первый закон, закон сохранения энергии: если нам дана система и мы подводим к ней тепло и производим над ней какую-то работу, то приращение энергии системы равно подведенному теплу и затраченной работе. Мы запишем все это так: к системе подводится тепло Q и над ней производится работа W, тогда энергия системы U возрастает; эту энергию иногда называют внутренней энергией. Связаны эти величины следующим соотношением:
Изменение U=Q+W. (44.1)
Изменение U можно получить, добавляя небольшое количество тепла DQ и небольшую работу DW:
DU=DQ+DW. (44.2)
Это — дифференциальная форма того же закона. Все это мы уже хорошо знаем из предыдущей главы.
§ 2. Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерянная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при температуре Т и делаем это достаточно медленно, то температура в комнате изменится ненамного. Мы превращаем работу в тепло при постоянной температуре. Ну, а можно ли поступить наоборот? Сумеем ли мы каким-то способом превратить тепло в работу при постоянной температуре? Второй закон термодинамики утверждает, что это невозможно. Было бы очень хорошо научиться превращать тепло в работу, изменив лишь направление процесса, похожего на трение. Если исходить только из закона сохранения энергии, можно считать, что тепловая энергия, например колебательная энергия молекул, способна служить удобным источником полезной энергии. Но Карно утверждал, что при постоянной температуре тепловую энергию нельзя извлечь из ее источника. Иначе говоря, если бы весь мир имел повсюду одинаковую температуру, то оказалось бы невозможным превратить тепловую энергию в работу. Хотя процессы, при которых работа переходит в тепло, могут идти при постоянной температуре, невозможно обратить их и вернуть работу обратно. Если говорить точно, Карно утверждал, что при постоянной температуре нельзя извлечь тепло из его источника и превратить в работу, не производя больше никаких изменений в заданной нам системе или в окружающем пространстве.
Последняя фаза очень важна. Предположим, что в запаянном контейнере находится сжатый воздух при постоянной температуре; мы позволили ему расшириться. Такое устройство может совершать работу; оно может привести в движение пневматический молоток. При расширении, например, воздух чуть-чуть охлаждается, но если в нашем распоряжении очень большое море, огромный тепловой резервуар, то мы снова сможем нагреть его. Итак, мы взяли из моря (резервуара) тепло и произвели работу при помощи сжатого воздуха. Однако Карно не ошибся. Ведь мы не сумели оставить все в системе без изменения. Чтобы сжать снова воздух, которому мы позволили расшириться, нам понадобится произвести дополнительную работу. Покончив с этим, мы обнаружим, что не только не смогли заставить систему работать при заданной температуре Т, но еще и сами вложили некую работу. Мы должны говорить только о таких случаях, когда полный результат всего процесса сводится к изъятию тепла и превращению его в работу, точно так же, как при преодолении трения конечный результат есть превращение работы в тепло. Если процесс сводится к движению по окружности, то систему можно вернуть точно в исходное положение, но конечным результатом этого процесса будет переход в тепло затраченной на преодоление трения работы. А можно ли обратить этот процесс? Повернуть, скажем, какую-нибудь ручку, чтобы все повернулось вспять, трение производило полезную работу, а моря остыли? Карно сказал, что этого не может быть. Давайте и мы предположим, что это невозможно.
Если бы это стало вдруг возможным, то это означало бы, что, помимо многих других полезных вещей, мы смогли бы, например, без всяких затрат отнять тепло у холодного тела и отдать его горячему. Между тем каждый знает, что тепло переходит от горячего тела к холодному.
Если мы просто приложим нагретое тело к холодному и больше ничего делать не будем, то, насколько известно, горячее тело никогда не станет горячее, а холодное — холоднее! Но если бы мы смогли произвести работу, отобрав тепло, скажем, у океана или от чего-нибудь еще, не изменив его температуры, то эту работу можно было бы, призвав на помощь трение, снова превратить в тепло, но уже при другой температуре. Например, второе плечо нашей воображаемой машины может тереться обо что-то, что и так уже нагрелось. Полный результат процесса в этом случае сводится к охлаждению «холодного» тела, в нашем случае океана, и нагреванию горячих трущихся частей машины. Гипотезу Карно, второй закон термодинамики, иногда формулируют так: тепло не может перетечь само собой от холодного тела к горячему. Но мы только что убедились в эквивалентности этих утверждений. Повторим их снова. Первое: нельзя осуществить процесс, единственным результатом которого является превращение тепла в работу при постоянной температуре. Второе: тепло не может перетечь само собой от холодного тела к горячему. Мы будем чаще пользоваться первой формулировкой.
Анализ работы тепловой машины, проделанный Карно, весьма похож на то, что мы делали в гл. 4 (вып. 1), когда изучали подъемные машины и рассуждали о законе сохранения энергии. Более того, приведенные там аргументы подсказаны аргументами Карно о работе тепловых машин. Поэтому некоторые рассуждения в этой главе покажутся вам уже знакомыми.
Предположим, что «котел» построенной нами тепловой машины поддерживается при температуре Т1. За счет отнятого у котла тепла Q1пар совершил работу W и выделил в «конденсоре» тепло Q2[температура конденсора равна Т2(фиг. 44.3)].
Фиг. 44.3. Схема тепловой машины.
Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q2равно Q1потому что не верил этому. Многие считали, что Q1и Q2одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выделенное тепло Q2равно теплу Q1за вычетом совершенной работы: