Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:
Фиг. 44.7. Машина В заставляет работать обратимую машину А в обратном направлении.
Обладая работой W, можно запустить машину А в обратном направлении, ведь это — обратимая машина. При этом она поглотит какое-то количество тепла из резервуара с температурой Т2, но зато вернет тепло Q1резервуару при температуре Т1. Каков чистый результат этого двойного цикла? Мы вернули все к исходному состоянию и совершили дополнительную работу W'-W. Дело свелось к тому, что мы извлекли энергию из резервуара с температурой Т2! Тепло Q1, взятое
Предположим теперь, что машина В тоже обратима. Тогда, конечно, не только W' не больше W, но и W не больше W'. Чтобы доказать это, надо просто обратить предыдущие аргументы. Итак, если обе машины обратимы, то они должны производить одинаковую работу, и мы пришли к блестящему выводу Карно: если машина обратима, то безразлично, как она умудряется превращать тепло в работу. Произведенная машиной работа, если только машина поглощает определенное количество тепла при температуре Т1и возвращает какую-то его часть при температуре Т2, не зависит от устройства машины. Так уж устроен мир, и от частных свойств машины это не зависит.
Если бы мы нашли закон, определяющий работу, совершаемую при изъятии тепла Q1при температуре Т1и возвращении части этого тепла при температуре T2, то эта величина была бы универсальной постоянной, не зависящей от свойств вещества. Конечно, если нам известны свойства какого-нибудь вещества, мы можем вычислить интересующую нас величину. После этого мы будем вправе заявить, что все остальные вещества, если с их помощью построить обратимую машину, произведут точно такую же работу. Такова основная идея, ключ, с помощью которого мы можем найти последующие соотношения. Например, мы хотим узнать, насколько резина сжимается при нагревании и насколько она остывает, когда мы позволяем ей сжаться. Предположим, что мы взяли резину в качестве рабочего вещества обратимой машины и совершили обратимый цикл. Чистый результат, полная произведенная работа,— это универсальная функция, великая функция, не зависящая от свойств вещества. Таким образом, мы убеждаемся, что есть нечто, ограничивающее в известном роде разнообразие свойств вещества. Мы не можем сделать эти свойства какими захотим, не можем изобрести вещество, которое, будучи использованным в тепловой машине, произвело бы за обратимый цикл работу больше допустимой. Этот принцип, это ограничение,— единственное реальное правило, которое можно вывести из термодинамики.
§ 4. Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1и Т2. Ясно, что W пропорционально Q1, ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q1, то обе сразу поглощают 2Q1, а работа, которую они совершают, равна 2 W и т. д. Поэтому пропорциональность W затраченному теплу Q1 вполне естественна.
После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Воспользуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.
Нам нужно лишь получить формулы для Q1и Q2 (ведь W=Q1– Q2) — тепла, которым машина обменивается с резервуарами во время изотермического расширения и сжатия. Для примера вычислим Q1— тепло, полученное от резервуара при температуре T1 во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно pa, объем Va, температура Т1, до точки b, где давление равно рb, объем Vb, а температура та же самая T1. Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная работа газа в период расширения
W= a b pdV
а
совершается за счет энергии Q1 , полученной из резервуара. Во время расширения pV=NkT1или
p-NkT1/V; значит,
т. е.
Q 1 =NkT 1 ln(V b /V a ).
Вот то тепло, которое взято из резервуара при температуре Т1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2:
Q2=NkT2ln(Vc/Vd). (44.5)
Чтобы закончить анализ, нужно еще найти соотношение между Vc/Vdи Vb/Va. Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVgостается постоянным. Поскольку pV=NkT, то формулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vg– 1=const, или TVg– 1=const, т. е.
T1Vbg– 1=T2Vcg– 1. (44.6)
Так как кривая 4 описывает адиабатическое сжатие от d до а, то
Т1Vag– 1=T2Vdg– 1. (44.6а)
Если поделить эти равенства одно на другое, то мы выясним, что отношения Vb/Vaи Vc/Vdравны, поэтому равны и логарифмы в (44.4) и (44.5). Значит,
Q1/T1=Q2/T2. (44.7)
Это и есть то соотношение, которое мы искали. Хотя оно доказано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.