Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

Фиг. 44.7. Машина В застав­ляет работать обратимую ма­шину А в обратном направлении.

Обладая работой W, можно запустить машину А в обратном направлении, ведь это — обратимая машина. При этом она поглотит какое-то количество тепла из резервуара с температурой Т2, но зато вернет тепло Q1резервуару при темпе­ратуре Т1. Каков чистый результат этого двойного цикла? Мы вернули все к исходному состоянию и совершили дополнитель­ную работу W'-W. Дело свелось к тому, что мы извлекли энергию из резервуара с температурой Т2! Тепло Q1, взятое

из резервуара с температурой T1 , было аккуратно возвращено. Раз это тепло все равно возвращается, то в качестве резервуара с температурой Т1можно взять что-нибудь поменьше океана и заключить это устройство внутрь составной машины А+В. Чистым результатом цикла такой машины будет изъятие из резервуара при температуре Т2тепла W'-W и превращение его в работу. Но извлечение полезной работы из резервуара при неизменной температуре без других изменений запрещается постулатом Карно. Этого нельзя сделать. Таким образом, не существует таких машин, которые извлекли бы некоторое количество тепла из резервуара при температуре Т1, возвратили бы какую-то его часть при температуре Т2и совершили боль­шую работу, чем обратимая машина, работающая при тех же самых температурных условиях.

Предположим теперь, что машина В тоже обратима. Тогда, конечно, не только W' не больше W, но и W не больше W'. Чтобы доказать это, надо просто обратить предыдущие аргу­менты. Итак, если обе машины обратимы, то они должны производить одинаковую работу, и мы пришли к блестящему выводу Карно: если машина обратима, то безразлично, как она умудряется превращать тепло в работу. Произведенная машиной работа, если только машина поглощает определенное количество тепла при температуре Т1и возвращает какую-то его часть при температуре Т2, не зависит от устройства ма­шины. Так уж устроен мир, и от частных свойств машины это не зависит.

Если бы мы нашли закон, определяющий работу, со­вершаемую при изъятии тепла Q1при температуре Т1и возвращении части этого тепла при температуре T2, то эта величина была бы универсальной постоянной, не зависящей от свойств вещества. Конечно, если нам известны свойства какого-нибудь вещества, мы можем вычислить интересующую нас величину. После этого мы будем вправе заявить, что все остальные вещества, если с их помощью построить обратимую машину, произведут точно такую же работу. Такова основная идея, ключ, с помощью которого мы можем найти последующие соотношения. Например, мы хотим узнать, насколько резина сжимается при нагревании и насколько она остывает, когда мы позволяем ей сжаться. Предположим, что мы взяли резину в качестве рабочего вещества обратимой машины и совершили обратимый цикл. Чистый результат, полная произведенная работа,— это универсальная функция, великая функция, не зависящая от свойств вещества. Таким образом, мы убежда­емся, что есть нечто, ограничивающее в известном роде разно­образие свойств вещества. Мы не можем сделать эти свойства какими захотим, не можем изобрести вещество, которое, будучи использованным в тепловой машине, произвело бы за обратимый цикл работу больше допустимой. Этот принцип, это ограни­чение,— единственное реальное правило, которое можно вы­вести из термодинамики.

§ 4. Коэффициент полезного действия идеальной машины

А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1и Т2. Ясно, что W пропорционально Q1, ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q1, то обе сразу поглощают 2Q1, а работа, которую они совершают, равна 2 W и т. д. Поэтому пропорциональность W затраченному теплу Q1 вполне естественна.

После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Восполь­зуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.

Нам нужно лишь получить формулы для Q1и Q2 (ведь W=Q1– Q2) — тепла, которым машина обменивается с резерву­арами во время изотермического расширения и сжатия. Для примера вычислим Q1тепло, полученное от резервуара при температуре T1 во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно pa, объем Va, тем­пература Т1, до точки b, где давление равно рb, объем Vb, а тем­пература та же самая T1. Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная рабо­та газа в период расширения

W= a b pdV

а

совершается за счет энергии Q1 , полученной из резервуара. Во время расширения pV=NkT1или

p-NkT1/V; значит,

т. е.

Q 1 =NkT 1 ln(V b /V a ).

Вот то тепло, которое взято из резервуара при температуре Т1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2:

Q2=NkT2ln(Vc/Vd). (44.5)

Чтобы закончить анализ, нужно еще найти соотношение между Vc/Vdи Vb/Va. Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVgостается постоянным. Поскольку pV=NkT, то фор­мулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vg– 1=const, или TVg– 1=const, т. е.

T1Vbg– 1=T2Vcg– 1. (44.6)

Так как кривая 4 описывает адиабатическое сжатие от d до а, то

Т1Vag– 1=T2Vdg– 1. (44.6а)

Если поделить эти равенства одно на другое, то мы выясним, что отношения Vb/Vaи Vc/Vdравны, поэтому равны и лога­рифмы в (44.4) и (44.5). Значит,

Q1/T1=Q2/T2. (44.7)

Это и есть то соотношение, которое мы искали. Хотя оно дока­зано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.

Поделиться:
Популярные книги

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII