Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 5. Электричество и магнетизм
Шрифт:

§ 5. Операции с С

Можно ли с векторным оператором С производить другие алгебраические действия? Попробуем скомбинировать его с век­тором. Из двух векторов можно составить скалярное произве­дение, причем двоякого рода:

(Вектор)·С или С· (Вектор).

Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он Судет действовать. А второе произведение — это некое скаляр­ное поле (потому что А·В — всегда скаляр).

Попробуем составить скалярное произведение С на извест­ное поле, скажем на h. Распишем покомпонентно

(2.32)

(2.33)

Эта

сумма инвариантна относительно преобразования координат. Если выбрать другую систему (отмеченную штрихами), то получилось бы

(2.34)

а это — то же самое число, которое получилось бы и из (2.33), хотя с виду оно выглядит иначе, т. е.

(2.35)

в любой точке пространства. Итак, С·h — это скалярное поле, и оно должно представить собой некоторую физическую вели­чину. Вы должны понимать, что комбинация производных в С·h имеет довольно специальный вид. Могут быть и другие комбинации всяческого вида, скажем dhy/dx, которые не яв­ляются ни скалярами, ни компонентами векторов.

Скалярная величина С· (Вектор) очень широко применяется в физике. Ей присвоили имя «дивергенция», или «расходимость». Например,

С·h = div h = «Дивергенция h». (2.36)

Можно было бы, как и для СT, описать физический смысл С·h. Но мы отложим это до лучших времен.

Посмотрим сначала, что еще можно испечь из векторного оператора С. Как насчет векторного произведения? Можно на­деяться, что

(2.37)

Компоненты этого вектора можно написать, пользуясь обыч­ным правилом для векторного произведения [см. (2.2)]:

(2.38)

Подобно этому,

(2.39)

(2.40)

Комбинацию СXh называют «ротор» (пишут rot h), или (редко) «вихрь h» (пишут curl h). Происхождение этого назва­ния и физический смысл комбинации мы обсудим позже.

В итоге мы получили три сорта комбинаций, куда входит С:

СТ = grad T = Вектор,

С·h=divh = Скаляр,

СXh = roth = Вектор.

Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.

В качестве примера применения нашего векторного диф­ференциального оператора С выпишем совокупность вектор­ных уравнений, в которой содержатся те самые законы электро­магнетизма, которые мы словесно высказали в гл. 1. Их назы­вают уравнениями Максвелла.

Уравнения Максвелла

(2.41)

где r (ро) — «плотность электрического заряда» (количество заряда в единице объема), a j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классиче­скую теорию электромагнитного поля. Видите, какой элегант­ной и простой записи мы добились с помощью наших новых обозначений!

§ 6. Дифференциальное уравнение потока тепла

Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется со­вершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры Т2, а дру­гую охладить до Т1 , то тепло потечет от T2к Т1(фиг. 2.7, а). Поток тепла пропорционален площади торцов А и разнице температур. Кроме того, он обратно пропорционален расстоя­нию между торцами. (Для заданной разницы температур чем тоньше плита, тем мощнее поток тепла.).

Фиг. 2.7. Тепловой по­ток через плиту (а) и бесконечно малая плит­ка, параллельная изо­термической поверхно­сти в большом блоке вещества (б).

Обозначая через J тепловую энергию, проходящую сквозь плиту за единицу вре­мени, мы напишем

Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотерми­ческим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).

Если площадь этой плиты DА, то поток тепла за единицу времени равен

(2.42)

Коэффициент пропорциональности c (каппа) называется тепло­проводностью.

(2.43)

где Ds — толщина плиты. Но DJ/DA мы раньше определили как абсолютную величину hвектора, направленного туда, куда течет тепло. Тепло течет от T1 + DT к T1,так что вектор h перпендикулярен изотермам (фиг. 2.7, б). Далее, DТ/Ds как раз равно быстроте изменения Т с изменением положения. А по­скольку изменения положения перпендикулярны изотермам, то наше AT/As — это максимальная скорость изменения. Она равна поэтому величине у Т. И, наконец, раз направления СТ и h противоположны, то (2.43) можно записать в виде вектор­ного уравнения

h = - cСТ. (2.44)

(Знак минус написан потому, что тепло течет в сторону пониже­ния температуры.) Уравнение (2.44) — это дифференциальное уравнение теплопроводности в массиве вещества. Вы видите, что это чисто векторное уравнение. С обеих сторон стоят векторы (если x число). Это обобщение на произвольный случай частного соотношения (2.42), верного для прямоугольной плиты.

Мы с вами должны будем научиться выписывать все соот­ношения элементарной физики [наподобие (2.42)] в этих хитро­умных векторных обозначениях. Они полезны не только потому, что уравнения начинают от этого выглядетъ проще. В них намного яснее проступает физическое содержание уравнений безотносительно к выбору системы координат.

Поделиться:
Популярные книги

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Младший научный сотрудник

Тамбовский Сергей
1. МНС
Фантастика:
попаданцы
альтернативная история
6.40
рейтинг книги
Младший научный сотрудник

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Вечная Война. Книга VIII

Винокуров Юрий
8. Вечная Война
Фантастика:
боевая фантастика
юмористическая фантастика
космическая фантастика
7.09
рейтинг книги
Вечная Война. Книга VIII

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5