Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:
как контурный интеграл по контуру цепи 2:
(17.29)
где I2 — ток в цепи 2, а r12 — расстояние от элемента цепи ds2 к точке на контуре 1, в которой мы вычисляем векторный потенциал (см. фиг. 17.9). Комбинируя (17.28) и (17.29), можно выразить э. д. с. в цепи 1 как двойной контурный интеграл:
В
где коэффициент m 12 равен
(17.30)
Из этого интеграла очевидно, что m 12 зависит только от геометрии цепей; он зависит от некоторого среднего расстояния между двумя цепями, причем в среднее с наибольшим весом входят параллельные отрезки проводников двух катушек. Нашу формулу можно использовать для вычисления коэффициента взаимной индукции любых двух цепей произвольной формы. Кроме того, она показывает, что интеграл для m 12 тождествен с интегралом для m 21. Таким образом, мы показали, что оба коэффициента одинаковы. Для системы только с двумя катушками коэффициенты m 12 и m 21 часто обозначают символом mбез значков и называют просто коэффициентом взаимной индукции:
m 12= m 21 = m.
§ 7. Самоиндукция
При обсуждении индуцированных э. д. с. в двух катушках на фиг. 17.8 и 17.9 мы рассмотрели лишь случай, когда ток проходит либо в одной катушке, либо в другой. Если токи имеются одновременно в обеих катушках, то магнитный поток, пронизывающий каждую катушку, будет представлять сумму двух потоков, существующих и по отдельности, поскольку к магнитным полям применим принцип суперпозиции. Поэтому э. д. с. в каждой катушке будет пропорциональна не только изменению тока в другой катушке, но и изменению тока в ней самой.
Фиг. 17.10. Цепь с источником напряжения и индуктивностью (а) и аналогичная ей механическая система (б).
Таким образом, полную э. д. с. в катушке 2 следует записать в виде
(17.31)
""Аналогично, э. д. с. в катушке 1 будет зависеть не только от изменяющегося тока в катушке 2, но и от изменяющегося тока в ней самой:
(17.32)
Коэффициенты m 22 и m 11 всегда отрицательны. Обычно пишут
(17.33)
где ж1 и ж 2называют коэффициентами самоиндукции двух катушек (или индуктивностями).
Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ж и ее
э. д. с. будет пропорциональна скорости изменения тока в катушке. Обычно считают, Что э. д. с. и ток одной катушки положительны, если они направлены одинаково. При этом условии для отдельной катушки
можно написать
(17.34)
Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».
Поскольку любая катушка обладает самоиндукцией, противодействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а). В такой цепи ток / связан с напряжением Vсоотношением
(17.35)
Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследовать его по принципу «одинаковые уравнения имеют одинаковые решения». Таким образом, если поставить в соответствие напряжение Vот внешнего источника приложенной внешней силе F, а ток I в катушке скорости v частицы, то коэффициент индукции катушки жбудет соответствовать массе т частицы (фиг. 17,10, б).
Таблица 17.1 · СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ
§ 8. Индуктивность и магнитная энергия
Продолжая аналогию предыдущего параграфа, мы отметили в таблице, что в соответствии с механическим импульсом p=mv (скорость изменения которого равна приложенной силе) должна существовать аналогичная величина, равная
ж I, скорость изменения которой V. Разумеется, мы не имеем права говорить, что ж I — это настоящий импульс цепи; на самом деле это вовсе не так. Вся цепь может быть неподвижна и вообще не иметь импульса. Просто ж Iаналогично импульсу mv в смысле удовлетворения аналогичным уравнениям.
Точно так же кинетической энергии 1/2mv2 здесь соответствует аналогичная величина 1/2ж 2. Но здесь нас ждет сюрприз. Величина 1/2aж I2 — действительно есть энергия и в электрическом случае. Так получается потому, что работа, совершаемая в единицу времени над индуктивностью, равна VI, а в механической системе она равна Fv — соответствующей величине. Поэтому в случае энергии величины не только соответствуют друг другу в математическом смысле, но имеют еще и одинаковое физическое значение.
Мы можем проследить это более подробно. В (17.16) мы нашли, что электрическая работа в единицу времени за счет сил индукции есть произведение э. д. с. и тока:
Подставляя вместо e ее выражение через токи из (17.34), имеем
(17.38)
Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток (что должно равняться накопленной энергии U), равна