Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:
записать
(17.46)
Любопытно, что при некоторых ограничениях этот интеграл можно превратить в
(17.47)
Чтобы увидеть это, выпишем подробно типичный множитель. Предположим, что мы взяли множитель (СXB)zAz, входящий в интеграл (17.46). Выписывая полностью компоненты, получаем
(имеются, конечно, еще два интеграла того же
Теперь предположим, что наша система (имея в виду источники и поля) — конечная, так что, когда мы уходим на большие расстояния, все поля стремятся к нулю. Тогда при интегрировании по всему пространству подстановка ByAzна пределах интеграла дает нуль. У нас остается только В (дАг/дх); это, очевидно, есть часть от By(СXA)yи, значит, от В·(СXA). Если вы выпишите остальные пять множителей, то увидите, что (17.47) на самом деле эквивалентно (17.46).
А теперь мы можем заменить (СXA) на В и получить
(17.48)
Мы выразили энергию в магнитостатическом случае только через магнитное поле. Выражение тесно связано с формулой, которую мы нашли для электростатической энергии:
(17.49)
Эти две энергетические формулы выделены потому, что иногда ими удобнее пользоваться. Обычно есть и более важная причина: оказывается, что для динамических полей (когда Е и В меняются со временем) оба выражения (17.48) и (17.49) остаются справедливыми, тогда как другие данные нами формулы для электрической и магнитной энергий перестают быть верными — они годятся лишь для статических полей.
Если нам известно магнитное поле В одной катушки, мы можем найти коэффициент самоиндукции, приравнивая выражение для энергии (17.48) и 1/2жI2. Посмотрим, что получится в результате для индуктивности длинного соленоида. Раньше мы видели, что магнитное поле в соленоиде однородно и В снаружи равно нулю. Величина поля внутри равна В=nI/e0с2, где n — число витков на единицу длины намотки, а I — ток. Если радиус катушки r, а длина ее L (мы считаем, что L очень велика, чтобы можно было пренебречь краевыми эффектами, т. е. L >>r), то внутренний объем равен pr2L. Следовательно, магнитная энергия равна
что равно 1/2^I2. Или
(17.50)
* Кстати, это не единственный способ установления соответствия между механическими и электрическими величинами.
* Мы пренебрегаем всеми тепловыми потерями энергии в сопротивлении катушки. Эти потери требуют дополнительных затрат энергии источника, но не меняют энергии, которая тратится на индуктивность.
Глава 18
УРАВНЕНИЯ МАКСВЕЛЛА
§ 1. Уравнения Максвелла
§ 2. Что дает добавка
§ 3. Все о классической физике
§ 4. Передвигающееся поле
§ 5. Скорость света
§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
§ 1. Уравнения Максвелла
В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). , До сих пор мы изучали уравнения Максвелла небольшими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким частным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко позабыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограничений (или почти без них).
Все уравнения Максвелла записаны в табл. 18.1 как словесно, так и в математических символах. Тот факт, что слова эквивалентны уравнениям, должен быть сейчас вам уже знаком — вы должны уметь переводить одну форму в другую и обратно.
Первое уравнение — дивергенция Е равна плотности заряда, деленной на eо,— правильно всегда. Закон Гаусса справедлив всегда как в динамических, так и в статических полях. Поток Е через любую замкнутую поверхность пропорционален заключенному внутри заряду. Третье уравнение — соответствующий общий закон для магнитных полей.
Уравнения Максвелла
(Поток Е через замкнутую поверхность) = (Заряд внутри нее)/e0
(Интеграл от Е по замкнутому контуру) = -d/dt(Поток В сквозь контур)
(Поток В через замкнутую поверхность) = 0
с2 (Интеграл от В по контуру)=(Ток в контуре) /e0 + d/dt(Поток Е сквозь контур)
(Поток заряда через замкнутую поверхность) =-d/dt(Заряд внутри нее)
Закон силы
F = q(E+vXB)
Закон движения
(Закон Ньютона, исправленный Эйнштейном}
Гравитация
Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение СXE=-dB/dt — это закон Фарадея, и обсуждался он в последних двух главах. Он тоже верен в общем случае. Но последнее уравнение содержит нечто новое. Раньше мы встречались только с частью его, которая годится для постоянных токов. В этом случае мы говорили, что ротор В равен j/e0c2, но правильное общее уравнение имеет новый член, который был открыт Максвеллом.