Физика учит новый язык. Лейбниц. Анализ бесконечно малых
Шрифт:
Символические величины, использованные Виетом, могут рассматриваться как длины отрезков или меры углов, а символические операции могут считаться, в свою очередь, геометрическими построениями. Следовательно, полученные решения могут относиться как к числовым, так и к геометрическим задачам.
ИЗМЕНЕНИЕ ПОДХОДА
В эпоху Возрождения искусство и литература получили значительное развитие, в то время как наука оказалась несколько подзабыта. Одним из создателей научного метода считается Фрэнсис Бэкон. В его сочинении, вдохновившем многие научные сообщества, "Новая Атлантида", правители были учеными, которые
Отношение к математике с середины XVI века радикально изменилось по сравнению с отношением к ней в Древней Греции. Появились новые задачи, происходящие из других наук и практических потребностей. Математика повернулась лицом к миру физики. Постепенно наука все больше основывалась на математических принципах, а математика все больше базировалась на других науках для своего дальнейшего развития.
Математики того времени были великими учеными и развивали свои знания во многих различных областях. Декарт говорил, что математика является наукой о порядке и мере и включает в себя, кроме алгебры и геометрии, астрономию, музыку, оптику и механику. Столпами механики Ньютона были сила и движение. Двумя главными моторами, двигавшими науку вперед, были астрономия и механика, развиваемые Галилеем и Кеплером. Например, конические сечения применяли к разным наукам: эллипсы — это траектории планет, а параболы — траектории снарядов.
Греческая строгость доказательства была оставлена в пользу эмпиризма. Для Галилея имели одинаковое значение как дедуктивная, так и экспериментальная части. В отличие от древнегреческих ученых он был больше заинтересован в получении новых результатов, чем в их безупречном обосновании. Время на строгую формулировку найдется и потом, поскольку самым важным является открытие само по себе. Убежденность в том, что полученные результаты затем можно доказать методами древнегреческих ученых, выражена в следующем высказывании Гюйгенса:
Гравюра Теобальда Фрайхера фон Ёра(1807- 1885), на которой изображен Лейбниц во время открытия Берлинской академии.
Гравюра, на которой изображено уничтожение Архимедом римских кораблей с помощью солнечных лучей.
Портрет Лейбница около 1700 года, работа Христофа Бернхарда Франке.
"Абсолютное доказательство не слишком интересно после того, как мы увидели, что может быть найдено идеальное доказательство. Признаю, что лучше бы оно было представлено в четком, искусном и элегантном виде, как во всех работах Архимеда. Но первое и самое главное — метод открытия сам по себе".
Но когда открытия излагались в эмпирической форме, без древнегреческой строгости, некоторые результаты не принимались другими учеными или вступали в противоречие с их данными. Еще одним важным аспектом было то, что проблемы нельзя ставить независимо друг от друга. Декарт утверждал, что схожие задачи должны решаться общим методом.
ДЕКАРТОВЫ КООРДИНАТЫ
Основная идея аналитической геометрии основывается на декартовых координатах.
Любая
Декартовы оси состоят из двух перпендикулярных прямых, пересекающихся в одной точке — начале координат. Если нанести деления на прямые, каждой точке будут соответствовать два числовых значения, отмеряемых на обеих осях. Первое отмечается на горизонтальной оси, называемой осью абсцисс, а второе — на вертикальной оси, называемой осью ординат. Точка записывается как Р (х, у), где х — абсцисса, а у — ордината.
РИС. 1
Две прямые при пересечении делят плоскость на четыре области, которые получают название квадрантов и нумеруются от I до IV, начиная с квадранта, в котором обе координаты положительные, и следуя против часовой стрелки (рисунок 1). Однако изначально понятия осей не существовало. Ферма определял координаты следующим образом: положение точки Р задано двумя длинами — одной, отмеряемой по горизонтали от точки О до точки I, и другой, отмеряемой наклонно от I до Р (рисунок 2). Эти измерения — наши сегодняшние х и у. Как можно увидеть, на рисунке не определены оси и нет отрицательных координат.
РИС. 2
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
Значительный скачок для перехода от геометрии к алгебре произошел с созданием аналитической геометрии, которая позволяет заменять кривые уравнениями, чтобы работать напрямую с алгебраическим решением. Кривая с точки зрения аналитической геометрии — это множество точек, которое удовлетворяет одному условию и связано с алгебраическим уравнением.
Как в то время нередко случалось, аналитическая геометрия была открыта независимо двумя учеными, результаты которых не были полностью одинаковыми. Создателями ее были французы Пьер Ферма (1601-1665) и Рене Декарт (1596— 1650).
Ферма некоторые даже называли принцем любителей, поскольку на самом деле один из создателей теории чисел был судейским чиновником и занимался математикой в свободное время. Больше всего он известен благодаря знаменитой Великой теореме Ферма, которую смогли доказать только три века спустя. Также он был одним из создателей теории вероятностей. При жизни Ферма не опубликовал ни одного исследования, поэтому его труды стали известны благодаря письмам и бумагам, которыми он обменивался с друзьями и знакомыми.
Декарт, философ, физик и математик, занимался геометрией, опираясь, как и Ферма, на классиков. В 1637 году он опубликовал свою великую работу "Рассуждение о методе", где излагал свою философию и куда включил три приложения: "Диоптрика", "Метеоры" и "Геометрия".
Таким образом началась одна из самых больших полемик века о том, кто был первым создателем аналитической геометрии. С одной стороны, в работе Ферма "Введение к теории плоских и пространственных мест", написанной в 1629 году, но опубликованной только в 1679 году, ее автор уже высказывает основные идеи аналитической геометрии, которые оказались близки к сегодняшним представлениям о ней. С другой стороны, нидерландский ученый Исаак Бекман (1588-1637), считающийся одним из первых исследователей вакуума, друг и наставник Декарта с 1619 года, утверждал, что в то время у его ученика уже было понимание метода решения всех задач, которые могут стоять перед геометрией.