Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:
Тогда sin ? = 12/13. Из прямоугольного ?DBС находим:
Применяя к треугольнику OBС теорему косинусов, получаем
Ответ:
Задача 70 (рис. 254)
Рис. 254.
Решение. Как видно из рисунка, диаметр окружности d совпадает с диагональю квадрата АВ. По теореме Пифагора
Ответ: 7?2
Задача 71 (рис. 255)
Рис. 255.
Решение. Пусть сторона малого квадрата а, тогда диаметр d = 2Rкруга круга равен диагонали малого квадрата, т. е.
Но Rкруга – это половина стороны большого квадрата. Сторона большего квадрата
Ответ: 2:1.
Задача 72 (рис. 256)
Рис. 256.
Решение. MNKLPTQS – правильный восьмиугольник (см. рис.). Пусть РТ = х, тогда
из равнобедренного треугольника LCP
Из равенства LP = РТ получаем:
Ответ:
Задача 73 (рис. 257)
Рис. 257.
Решение. Очевидно, что MNKL – квадрат. Его диагональ NL = NE + FL + EF = 2NE + EF = 2NE + 1 (см. рис.). Так как NE – высота в равностороннем треугольнике BNC, то
Сторона квадрата
Ответ: 2 + ?3.
Задача 76 (рис. 258)
Рис. 258.
Решение. Можно, конечно, пуститься в достаточно длинные арифметические вычисления, но мы покажем самое простое и красивое решение. Раз площадь большого треугольника равна площади шестиугольника, то площадь этого треугольника в 6 раз больше площади треугольника ОАВ. А поскольку площадь правильного треугольника пропорциональна квадрату стороны, то его сторона в ?6 раз больше стороны АВ, т. е. сторона его будет равна 14?6.
Ответ: 14?6.
Задача 77 (рис. 259)
Рис. 259.
Решение. Пусть сторона равностороннего треугольника АВ = a;
Найдём радиус r вписанной окружности
Здесь р = 3a/2 – полупериметр правильного треугольника ABC.
Ответ: 2:1.
Задача 78 (рис. 260)
Рис. 260.
Решение. Пусть ABCD – данный четырёхугольник. Обозначим К, L, М, N – точки касания окружности соответственно со сторонами АВ, ВС, CD, AD четырёхугольника ABCD. Соединим эти точки с центром О. Треугольники АОК, AON, CLO, СМО – равны, как имеющие равные гипотенузы и катеты: у них АО = ОС по условию и КО = OL = ОМ = ON = r, где r – радиус окружности, вписанной в четырёхугольник ABCD. Аналогично доказывается, что равны треугольники КОВ, BOL, DON и DOM. Из равенства треугольников имеем, что ?КОВ = ?BOL = ?NOD = ?DOM, а также ?АОК = ?LOC = ?AON = ?СОМ. Значит, ?AON + ?NOD = ?АОК + ?КОВ = ?BOL + ?LOC = ?СОМ + ?MOD. Так как ?АОВ = ?АОК + ?КОВ, ?ВОС = ?BOL + ?LOC, ?COD = ?СОМ + ?MOD, ?AOD = ?AON + ?NOD, то ?АОВ = ?ВОС = ?COD = ?AOD, и поскольку в сумме они составляют 360°, то каждый из них равен 90°. По теореме Пифагора из треугольника АОВ находим, что
Следовательно, периметр четырёхугольника (ромба) ABCD равен 4?5.
Ответ: 4?5.
Задача 85 (рис. 261)
Рис. 261.
Решение. Составим пропорции: ?10? длина дуги А1В1 = 1.
360° ? длина окружности 2?R1. Отсюда
Ответ:
Задача 86 (рис. 262)
Рис. 262.
Решение. Так как ОА = 2r, то из прямоугольного треугольника ОBА имеем: ?ВАО = 30° (гипотенуза ОА в 2 раза больше катета OB) и ?ВАС = 60°.
Ответ: 60°
Задача 87 (рис. 263)
Рис. 263.
Решение. Так как BD = 6, АС = 12, то PD = 3; CP = 6 (см. рис.).
Из ?O1CD по теореме косинусов имеем:
Ответ: 15/2 см.
Задача 88 (рис. 264)
Рис. 264.
Решение. Пусть О – центр вписанной в треугольник окружности; ОМ, ОТ, ОР – радиусы, проведённые к точкам касания. Так как АС = 6, то МС = PC = 3, ВР = ВТ = 10 – 3 = 7. ?ТВР подобен ?ABC и TP/AC = BP/BC; TP/6 = 7/10; TP = 42/10 = 4,2.
Ответ: 4,2 см.
Задача 89 (рис. 265)
Рис. 265.
Решение. Пусть радиус большого круга равен R, радиус малого круга r (см. рис.) ОС = r; OB = R.
Ответ:
Задача 90 (рис. 266)
Рис. 266.
Решение. Т. к. ?ABC – равносторонний, то
Радиус окружности
Поэтому получаем
Ответ: 3.
Задача 91 (рис. 267)
Рис. 267.
Решение. Пусть точка О – центр окружности и r – её радиус. Соединим точки В и С с центром О и проведём диаметр АК. Так как вписанный угол ВАС опирается на дугу ВКС и его величина равна ?/6, то центральный угол ВОС, опирающийся на ту же дугу, имеет величину, равную ?/3. Так как хорды АВ и АС имеют одинаковые длины, то ?BOA = ?АОС. Поскольку ?BOA + ?АОС = 2? – ?/3, то отсюда получаем, что ?BOA = ?АОС = 5?/6. Теперь подсчитаем площадь SABKC той части круга, которая заключена в угле ВАС. Она равна сумме площадей сектора ОВКС и треугольников АОВ и АОС (заметим, что у этих треугольников ОА = ОВ = ОС = r):
Ответ:
§ 2. Решения и ответы к задачам § 2 главы 2
Задача 94 (рис. 268)
Рис. 268.
Решение. Решение задачи непосредственно видно из чертежа. Соединив центр окружности с вершинами треугольника и с точками касания, получим три пары равных треугольников. Периметр Р = 7 + 7 + 6 = 20.
Ответ: Р = 20 см.