Чтение онлайн

на главную

Жанры

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:

Тогда sin ? = 12/13. Из прямоугольного ?DBС находим:

Применяя к треугольнику OBС теорему косинусов, получаем

Ответ:

Задача 70 (рис. 254)

Рис. 254.

Решение. Как видно из рисунка, диаметр окружности d совпадает с диагональю квадрата АВ. По теореме Пифагора

Ответ: 7?2

см.

Задача 71 (рис. 255)

Рис. 255.

Решение. Пусть сторона малого квадрата а, тогда диаметр d = 2Rкруга круга равен диагонали малого квадрата, т. е.

Но Rкруга – это половина стороны большого квадрата. Сторона большего квадрата

Ответ: 2:1.

Задача 72 (рис. 256)

Рис. 256.

Решение. MNKLPTQS – правильный восьмиугольник (см. рис.). Пусть РТ = х, тогда

из равнобедренного треугольника LCP

Из равенства LP = РТ получаем:

Ответ:

Задача 73 (рис. 257)

Рис. 257.

Решение. Очевидно, что MNKL – квадрат. Его диагональ NL = NE + FL + EF = 2NE + EF = 2NE + 1 (см. рис.). Так как NE – высота в равностороннем треугольнике BNC, то

Сторона квадрата

Ответ: 2 + ?3.

Задача 76 (рис. 258)

Рис. 258.

Решение. Можно, конечно, пуститься в достаточно длинные арифметические вычисления, но мы покажем самое простое и красивое решение. Раз площадь большого треугольника равна площади шестиугольника, то площадь этого треугольника в 6 раз больше площади треугольника ОАВ. А поскольку площадь правильного треугольника пропорциональна квадрату стороны, то его сторона в ?6 раз больше стороны АВ, т. е. сторона его будет равна 14?6.

Ответ: 14?6.

Задача 77 (рис. 259)

Рис. 259.

Решение. Пусть сторона равностороннего треугольника АВ = a;

Найдём радиус r вписанной окружности

Здесь р = 3a/2 – полупериметр правильного треугольника ABC.

Ответ: 2:1.

Задача 78 (рис. 260)

Рис. 260.

Решение. Пусть ABCD – данный четырёхугольник. Обозначим К, L, М, N – точки касания окружности соответственно со сторонами АВ, ВС, CD, AD четырёхугольника ABCD. Соединим эти точки с центром О. Треугольники АОК, AON, CLO, СМО – равны, как имеющие равные гипотенузы и катеты: у них АО = ОС по условию и КО = OL = ОМ = ON = r, где r – радиус окружности, вписанной в четырёхугольник ABCD. Аналогично доказывается, что равны треугольники КОВ, BOL, DON и DOM. Из равенства треугольников имеем, что ?КОВ = ?BOL = ?NOD = ?DOM, а также ?АОК = ?LOC = ?AON = ?СОМ. Значит, ?AON + ?NOD = ?АОК + ?КОВ = ?BOL + ?LOC = ?СОМ + ?MOD. Так как ?АОВ = ?АОК + ?КОВ, ?ВОС = ?BOL + ?LOC, ?COD = ?СОМ + ?MOD, ?AOD = ?AON + ?NOD, то ?АОВ = ?ВОС = ?COD = ?AOD, и поскольку в сумме они составляют 360°, то каждый из них равен 90°. По теореме Пифагора из треугольника АОВ находим, что

Следовательно, периметр четырёхугольника (ромба) ABCD равен 4?5.

Ответ: 4?5.

Задача 85 (рис. 261)

Рис. 261.

Решение. Составим пропорции: ?10? длина дуги А1В1 = 1.

360° ? длина окружности 2?R1. Отсюда

Ответ:

Задача 86 (рис. 262)

Рис. 262.

Решение. Так как ОА = 2r, то из прямоугольного треугольника ОBА имеем: ?ВАО = 30° (гипотенуза ОА в 2 раза больше катета OB) и ?ВАС = 60°.

Ответ: 60°

Задача 87 (рис. 263)

Рис. 263.

Решение. Так как BD = 6, АС = 12, то PD = 3; CP = 6 (см. рис.).

Из ?O1CD по теореме косинусов имеем:

Ответ: 15/2 см.

Задача 88 (рис. 264)

Рис. 264.

Решение. Пусть О – центр вписанной в треугольник окружности; ОМ, ОТ, ОР – радиусы, проведённые к точкам касания. Так как АС = 6, то МС = PC = 3, ВР = ВТ = 10 – 3 = 7. ?ТВР подобен ?ABC и TP/AC = BP/BC; TP/6 = 7/10; TP = 42/10 = 4,2.

Ответ: 4,2 см.

Задача 89 (рис. 265)

Рис. 265.

Решение. Пусть радиус большого круга равен R, радиус малого круга r (см. рис.) ОС = r; OB = R.

Ответ:

Задача 90 (рис. 266)

Рис. 266.

Решение. Т. к. ?ABC – равносторонний, то

Радиус окружности

Поэтому получаем

Ответ: 3.

Задача 91 (рис. 267)

Рис. 267.

Решение. Пусть точка О – центр окружности и r – её радиус. Соединим точки В и С с центром О и проведём диаметр АК. Так как вписанный угол ВАС опирается на дугу ВКС и его величина равна ?/6, то центральный угол ВОС, опирающийся на ту же дугу, имеет величину, равную ?/3. Так как хорды АВ и АС имеют одинаковые длины, то ?BOA = ?АОС. Поскольку ?BOA + ?АОС = 2? – ?/3, то отсюда получаем, что ?BOA = ?АОС = 5?/6. Теперь подсчитаем площадь SABKC той части круга, которая заключена в угле ВАС. Она равна сумме площадей сектора ОВКС и треугольников АОВ и АОС (заметим, что у этих треугольников ОА = ОВ = ОС = r):

Ответ:

§ 2. Решения и ответы к задачам § 2 главы 2

Задача 94 (рис. 268)

Рис. 268.

Решение. Решение задачи непосредственно видно из чертежа. Соединив центр окружности с вершинами треугольника и с точками касания, получим три пары равных треугольников. Периметр Р = 7 + 7 + 6 = 20.

Ответ: Р = 20 см.

Поделиться:
Популярные книги

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Идеальный мир для Социопата 12

Сапфир Олег
12. Социопат
Фантастика:
фэнтези
постапокалипсис
рпг
7.00
рейтинг книги
Идеальный мир для Социопата 12

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Sos! Мой босс кровосос!

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Sos! Мой босс кровосос!

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Эксперимент

Юнина Наталья
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Эксперимент