Чтение онлайн

на главную - закладки

Жанры

Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:

Ответ: 1.

Задача 13 (рис. 222)

Рис. 222.

Решение. Пусть в треугольнике ABC ВС = а, ?АВС = ?, ?АСВ = ?, длину АС обозначим через х. По теореме синусов:

Площадь треугольника равна половине произведения двух сторон треугольника на синус угла между ними.

Ответ:

Задача 14 (рис. 223)

Рис. 223.

Решение.

Пусть ABC – данный в условии задачи треугольник. Так как медиана треугольника ABC – отрезок СЕ – всегда лежит внутри треугольника, то, чтобы точка пересечения отрезков СЕ и BD также лежала внутри треугольника ABC, необходимо, чтобы угол С был меньшим 90°. Обозначим через Р точку пересечения прямых BD и СЕ. Так как PD перпендикулярна АС, то расстояние от точки Р до стороны АС равно длине отрезка PD, т. е. равно 1 см. Проведём через точку Е прямую, параллельную основанию АС треугольника ABC. Пусть эта прямая пересекает высоту BD в точке К, а сторону ВС в точке F. Так как СЕ – медиана и прямая EF параллельна АС, то EF – средняя линяя треугольника ABC. Поэтому, в частности, прямая EF делит пополам высоту BD, т. е. KD = 1/2BD = 3 см. Теперь находим, что КР = KD – PD = 2 см. Треугольники ЕРК и DPC подобны, так как у них ?ЕРК = ?DPC, как величины вертикальных углов, ?РКЕ = ?PDC = 90°. Из подобия этих треугольников следует, что KP/PD = EP/PC. Так как PC = ЕС – ЕР, то это равенство можно записать в виде 2/1 = EP/(5 – EP), откуда получаем, что ЕР = 10/3 см. Из прямоугольного треугольника ЕКР находим, что

Так как ЕК средняя линия треугольника ABD, то AD = 2 ? ЕК 16/3 см. Из прямоугольного треугольника ADB находим

Ответ:

Задача 15 (рис. 224)

Рис. 224.

Решение. Обозначим длину отрезка АС через х. Из прямоугольного треугольника АЕС по теореме Пифагора находим

Поусловию BE: EС = 5:9, значит,

Площадь треугольника ABC равна 1/2 BD ? АС и одновременно 1/2 АЕ ? ВС, так что BD ? АС = АЕ ? ВС или

Последнее уравнение можно переписать в виде

Возведя последнее уравнение в квадрат, получим, что х2= 225, откуда х = 15, либо х = -15. Так как х – длина стороны, то х = 15. Следовательно, длина стороны АС равна 15.

Ответ: 15.

Задача 16 (рис. 225)

Рис. 225.

Решение. По теореме синусов ВС = 2Rsin ?ВАС = 2 ? 2 ? 1/2 = 2, где R – радиус описанной окружности. Так как АВ – хорда, то её длина не больше диаметра, т. е. АВ ? 2R = 4. Покажем, что АВ < 4. Если АВ = 4, то ?АСВ = ?/2 и должно выполняться равенство АВ2= АС2+ ВС2. Но оно не выполняется, так как 42? З2+ 22. Значит, АВ < 4. Тогда

Требуемое утверждение доказано.

Задача 17 (рис. 226)

Рис. 226.

Решение. Пусть ВК и AD – медианы, проведенные соответственно к сторонам АС и ВС. Обозначим через Е точку их пересечения. Так как точка К – середина стороны АС и точка D – середина стороны ВС, то отрезок KD – средняя линия треугольника ABC. Следовательно, АВ = 2 ? KD. Так как по условию задачи ВК и AD перпендикулярны, то треугольники АЕК, KED, BED, АЕВ прямоугольные. Применяя теорему Пифагора к этим треугольникам, имеем:

Ответ:

Задача 22 (рис. 227)

Рис. 227.

Решение. Пусть в треугольнике ABC АВ = ВС = 12, ?ABC = 120°. Так как в треугольнике сумма углов равна 180°, то ?А + ?С = 180° – 120° = 60°. Учитывая, что в равнобедренном треугольнике углы при основании равны, получаем: ?А = 30°. Рассмотрим треугольник ВНА, где ВН – высота треугольника. ВН – катет в этом треугольнике, лежащий напротив угла в 30°.

Тогда ВН = 1/2 ? АВ = 6.

Ответ: 6.

Задача 23 (рис. 228)

Рис. 228.

Решение. Поскольку высота в равнобедренном треугольнике, проведённая к основанию, является и медианой треугольника, то AD = DC = 2. Тогда по теореме Пифагора имеем:

Естественно, что и ВС = 2?5. Воспользуемся формулой радиуса описанной около треугольника окружности R = abc/4S. Длины сторон треугольника равны 4, 2?5, 2?5, а площадь треугольника S = 1/2 ? AC ? BD = 1/2 ? 4 ? 4 = 8;

Тогда площадь круга Sкруга = ?R2= 25?/4.

Ответ: 25?/4.

Задача 24 (рис. 229)

Рис. 229.

Решение. Так как BD – высота в равнобедренном треугольнике ABC, то она является и медианой, т. е. AD = DC. Так как AC/BC = 6/5, то можно обозначить DC = Зх; ВС = 5х (см. рис.). Из ?BCD по теореме Пифагора DB2+ DC2= ВС2. Или 82+ (Зх)2= (5х)2; х = 2. Радиус вписанной окружности r = S/P; площадь треугольника S = 1/2 АС ? BD = 1/2 ? 6х ? 8 = 48; полупериметр р = (5x + 5x + 6x)/2 = 16; r = 48/16 =3.

Ответ: 3.

Задача 25

Решение. Sзаштрихованного сектора = 1/3(Sкруга – Sтреугольника). Длина окружности l = 2?R. По условию l = 4?; 2?R = 4?; R = 2. Sкpyгa = ?R2= 4?. Длину стороны треугольника найдём по теореме синусов:

Ответ:

Задача 26 (рис. 230)

Рис. 230.

Поделиться:
Популярные книги

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить