Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:
Билет № 19
1. Критерий вписанного в окружность четырёхугольника.
2. Площадь треугольника.
3. В параллелограмме ABCD длина диагонали BD, перпендикулярной стороне АВ, равна 6. Длина диагонали АС равна 2?22. Найдите длину стороны AD.
4. Периметр прямоугольного треугольника равен 24 см, а его площадь равна 24 см2. Найдите площадь описанного круга.
Билет № 20
1.
2. Формулы радиусов вписанной и описанной окружностей для правильного n-угольника. Площадь правильного многоугольника.
3. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 и 12 см. Найдите катеты треугольника.
4. Около окружности описана равнобокая трапеция, у которой боковая сторона точкой касания делится на отрезки 4 и 9 см. Найдите площадь трапеции.
§ 4. Экзаменационный комплект № 4 (элективный уровень)
Билет № 1
1. Аксиомы и теоремы. Определения. Аксиомы планиметрии.
2. Критерий вписанной в четырехугольник окружности.
3. Формула угла между прямыми a1x + BLy + c1 = 0 и а2х + b2у + с2 = 0.
4. В остроугольном треугольнике ABC из вершине и С на стороны ВС и АВ опущены высоты АР и CQ. Известно, что площадь треугольника ABC равна 18, площадь треугольника BPQ равна 2, а длина отрезка PQ равна 2?2. Вычислите радиус окружности, описанной около треугольника ABC.
5. Основание АВ трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали АС равна а, а длина боковой стороны ВС равна b. Найти площадь трапеции.
Билет № 2
1. Признаки и свойства фигур. Характеристическое свойство геометрической фигуры. Примеры.
2. Критерий описанной около четырёхугольника окружности.
3. Координатные формулы деления отрезка в данном отношении.
4. В треугольнике, один из углов которого равен разности двух других, длина меньшей стороны равна 1, а сумма площадей квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найти длину большей стороны треугольника.
5. В выпуклом четырёхугольнике ABCD диагонали АС и BD пересекаются в точке F. Известно, что AF = CF = 2, BF = 1, DF = 4, ?BFC = ?/3. Найти косинус угла между векторами АВ и DC.
Билет № 3
1. Прямая, обратная, противоположная и обратная к противоположной теоремы. Закон контрапозиции. Метод доказательства от противного.
2. Формула Герона площади треугольника.
3.
4. В треугольнике ABC величина угла ВАС равна ?/3, длина высоты, опущенной из вершины С на сторону АВ, равна – ?3 см, а радиус окружности, описанной около треугольника ABC, равен 5 см. Найти длины сторон треугольника ABC.
5. Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Вычислить длину диагонали АС, если BD = 2, АВ = 1, ?ABD: ?ВВС = 4:3.
Билет № 4
1. Геометрическое место точек. Основные геометрические места точек на плоскости. Метод геометрических мест.
2. Признаки подобия треугольников.
3. Формула расстояния между параллельными прямыми ах + by + с1 = 0 и ах + by + с2 = 0.
4. На катете АС прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу АВ в точке К. Найти площадь треугольника СКВ, если длина катета AС равна b и величина угла ABC равна ?.
5. В выпуклом четырёхугольнике длины диагоналей равны одному и двум метрам. Найти площадь четырёхугольника, зная, что длины отрезков, соединяющих середины его противоположных сторон, равны.
Билет № 5
1. Вектор. Координаты вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число.
2. Признаки параллельности прямых.
3. Зависимость между высотами треугольника и радиусом вписанной в него окружности.
4. Длины боковых сторон трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит её на две части, отношение площадей которых равно 5/11. Найти длины оснований трапеции.
5. В треугольнике ABC длина высоты BD равна 6 см, длина медианы СЕ равна 5 см, расстояние от точки пересечения отрезков BD и СЕ до стороны АС равно 1 см. Найти длину стороны АВ.
Билет № 6
1. Движения на плоскости, их виды. Композиция движений.
2. Свойство биссектрисы треугольника.
3. Взаимное расположение прямой ах + by + с = 0 и вектора n = (а; b).
4. Выпуклый четырёхугольник ABCD описан вокруг окружности с центром в точке О, при этом АО = ОС = 1, ВО = OD = 2. Найти периметр четырёхугольника ABCD.
5. В треугольнике ABC на стороне АВ взята точка К так, что АК: ВК = 2:1, а на стороне ВС взята точка L так, что CL: BL = 2:1. Пусть Q – точка пересечения прямых AL и СК. Найти площадь треугольника ABC, если дано, что площадь треугольника BQC равна 1.