Геометрия: Планиметрия в тезисах и решениях. 9 класс
Шрифт:
Билет № 21
1. Формулы площади прямоугольника и параллелограмма (формулы и примеры).
2. Второй признак равенства треугольников.
3. На сколько увеличится или уменьшится длина окружности, если ее радиус увеличить на 10 см.
4. Докажите, что середины сторон равнобокой трапеции являются вершинами ромба.
Билет № 22
1. Формула площади трапеции (формула и пример).
2. Признаки равенства
3. Даны точки А (1, -3) и В (2, 0). Найдите такую точку С (х, у), чтобы векторы АВ и СА были равны.
4. Точка касания окружности, вписанной в равнобедренный треугольник, делит боковую сторону на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.
Билет № 23
1. Формула площади круга (формула и пример).
2. Теорема Пифагора.
3. Докажите, что центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к основанию.
4. Найдите геометрическое место середин равных хорд окружности.
§ 2. Экзаменационный комплект № 2 (базовый уровень)
Билет № 1
1. Равенство фигур. Признаки равенства треугольников (доказательство одного из них).
2. Критерий описанного около окружности четырёхугольника (без доказательства).
3. Точка С – середина отрезка АВ. Найдите длину отрезка АС в дециметрах, если АВ = 7 м 58 см.
4. В прямоугольнике ABCD AD = 12 см, CD = 5 см, О – точка пересечения диагоналей. Найдите
5. В треугольнике ABC угол А = углу В = 75°. Найдите ВС, если площадь треугольника равна 36 см2.
Билет № 2
1. Сумма углов треугольника (с доказательством). Вывод формулы суммы углов выпуклого n-угольника.
2. Критерий вписанного в окружность четырёхугольника (без доказательства).
3. Основания трапеции относятся как 2:3, а высота равна 6 см. площадь трапеции 60 см2. Найдите основания трапеции.
4. В прямоугольном треугольнике ABC АВ = 6 см, АС = 8 см. ВС = 10 см. Найдите расстояние:
а) от точки В до прямой АС;
б) от точки С до прямой АВ.
Может ли расстояние от точки А до прямой СВ быть равным 7 см?
5. Точка М принадлежит отрезку РК, причем РМ: МК = 2:1. Найдите координаты точки К, если координаты точек Р и М равны (6; 3) и (14; 9) соответственно.
Билет № 3
1. Геометрическое место центров описанной около треугольника и вписанной в треугольник окружностей (с доказательством).
2. Площадь четырёхугольника (без вывода).
3.
а) вектор СВ через векторы АС и АВ;
б) вектор МА через векторы ВА и ВМ.
4. В ромбе ABCD, где угол А острый, BE и BF – высоты. Угол между диагональю BD и высотой BF равен 40°:
а) докажите, что BE = BF.
б) найдите углы ромба.
5. В треугольнике ABC точки F и М лежат соответственно на сторонах АВ и ВС, причем CF = AM, а угол MAC = углу FCA. Докажите, что треугольник ABC равнобедренный.
Билет № 4
1. Свойства параллелограмма (с доказательством).
2. Геометрическое введение синуса, косинуса, тангенса котангенса. Значения sin, cos, tg, ctg от углов 30°, 45°, 60°.
3. Прямой угол ADB разделен лучом DC на два угла, из которых один больше другого на 8°. Найдите градусные меры этих углов.
4. В равнобедренной трапеции ABCD угол А = 30°, угол ACD = 135°, AD = 20 см, ВС = 10 см:
а) докажите, что АС – биссектриса угла ВАС;
б) найдите периметр трапеции.
5. В треугольнике ABC АВ = 17 см, ВС = 25 см. Высота BD равна 15 см. Найдите площадь треугольника.
Билет № 5
1. Свойства ромба, прямоугольника, квадрата (с доказательством).
2. Уравнение прямой (без вывода). Смысл коэффициента k в уравнении у = kx + b (без обоснования).
3. Периметр треугольника равен 35 см. Найдите отрезки, на которые биссектриса треугольника делит противоположную сторону, если две другие стороны треугольника равны 12 и 16 см.
4. Найдите радиус окружности, вписанной в треугольник со сторонами 20, 20 и 24 см.
5. Как изменится длина окружности, если площадь соответствующего ей круга уменьшится в 441 раз?
Билет № 6
1. Теорема Фалеса (с доказательством).
2. Вектор. Действия над векторами. Базис на плоскости. Теорема о разложении вектора по базису (без доказательства).
3. Дана трапеция ABCD. Постройте фигуру, на которую отображается данная трапеция при центральной симметрии с центром А.
4. В треугольнике ABC CD – медиана. Найдите площадь треугольника BDC, если АС = 10 см, ВС = 20 см и угол АСВ = 135°.
5. На рисунке изображена окружность с центром О, АВ = DE. Докажите, что угол АОЕ равен углу BOD (рис. 216).
Рис. 216.
Билет № 7
1. Свойство средней линии треугольника и трапеции (с доказательством).
2. Длина окружности и площадь круга (без вывода).