Хаос и структура
Шрифт:
3) Обе установки—упорядоченность субстанциально–актуальная и упорядоченность абстрактно–смысловая — должны объединиться вместе так, чтобы множество оказалось упорядоченным и в том и в другом отношении. Другими словами, должны существовать множества, которые сохраняют свою фигурность и в своих преобразованиях не нарушают ни субстанциальной, ни смысловой упорядоченности. Как и везде в диалектике, здесь отвлеченная идея, соединяясь со своим инобытием, с алогическим (в отношении себя самой) материалом, порождает уже конкретный образ, в котором нельзя отделить идею от инобытия и инобытие от идеи. Здесь появляется чистая фигурность, в которую воплотилась идея порядка, и мы впервые можем увидеть ее стройные контуры. Однако если прослеживать этот ход идей в геометрии, то с этой фигурностью еще не получится обыкновенная элементарная геометрия. Это будет так называемая проективная геометрия, отличающаяся от обыкновенной тем, что ей не свойственна идея измерения, не свойственны метрические установки, представляющие собою уже дальнейшее диалектическое воплощение идей порядка. Аналогично с этим мы должны требовать категорию проективного множества в отвлечении от всякой идеи размерности.
Одна и та же диалектическая конструкция этого тройного вида упорядоченности — континуальной, топологической и проективной—может быть выражена и зафиксирована разно. Во–первых, мы уже указали одну категориальную схему: континуум может трактоваться как перво–принцип, и тогда топологическая множественность будет определена через положенность чистого и абстрактного порядка, а проективное множество будет положенностью и воплощенностью порядка как структурно выработанного порядка. Можно сказать, во–вторых, и иначе: континуум и топологическая структура есть воплощенность из идеи порядка его категории самотождественного
В данном месте нецелесообразно давать полную диалектику всех видов упорядочения, так как это является предметом целого специального отдела нашего исследования. Поэтому мы не касаемся пока таких построений, как аналитическое множество или измеримое множество, представляющих собою еще дальнейшие диалектические этапы упорядочения. Предыдущие замечания были только образцом исследования данного вопроса.
4. Стоит упомянуть еще и о том, что в математической литературе мы имеем попытки определить и самое понятие порядка. Это, конечно, редкость, потому что большая часть основных понятий в математике вообще не определяется никак. Кажется, никто еще не дал определения таких понятий, как «точка», «линия», «сумма», «множество» и т. п. К числу этих определяемых только вербально понятий принадлежит и изучаемая нами здесь категория порядка. У Френкеля [31] мы находим следующее определение этой категории: «Множество R обладает следующими характеристическими для него свойствами: 1. если ту и т2—два различных элемента множества А/, Rx и Я2 — соответствующие им остатки из А/, то или Я2 есть подмножество для /?ь или Rx есть подмножество для R2 (именно смотря по тому, появляется ли тх раньше т2 или т2 раньше тх)\ 2. если тх и т2 — два различных элемента А/, то в R входит по крайней мере один остаток R0, содержащий один из обоих элементов тх и т2 (а именно элемент, появляющийся в на более позднем месте; если тх стоит раньше т2, то, например, соответствующий тх остаток R0 хотя и содержит тъ но он не содержит тх)\ 3. объединенное множество каждого множества остатков от (т. е. каждого подмножества для R) есть в свою очередь остаток от —следовательно, элемент от R». Множество R с такими тремя свойствами и есть то множество, при наличии которого упорядочивается множество М.
31
A. Fraenkel Einl. in d. Mcngcnl.2, 213.
[а)] Это определение упорядочивающего множества способно сначала поставить философствующего только в тупик. Однако тщательное расследование этого определения вскрывает как всю беспомощность математической мысли поставить философскую проблему, так и ее весьма поучительную слепоту, но все же в своей слепоте бессознательно правильно нащупывающей логический аппарат, который тут пускается в ход человеческим сознанием.
b) Возьмем первое свойство множества R. Здесь указывается, что каждому элементу из соответствует некий определенный остаток до всего М9 который пока мыслится как неупорядоченный. Выставляется требование, чтобы эти неупорядоченные куски множества тоже находились между собою в отношениях целого и части. Что такое требование вполне естественно, в этом сомневаться не приходится. Но тут с первого же шага совершается обычная в математических рассуждениях petitio principii; а именно, требуется определить, что такое порядок множества или что такое упорядочивающее множество. Но при этом уже предполагается, что упорядочено (так как имеется в виду, что т1 раньше т2 или наоборот). Ведь только зная порядок элементов в М, и можно будет сказать, какой остаток и для какого [элемента ] окажется частью или подмножеством. Что тх раньше т2, это Френкель знает; и что значит этот порядок, его нисколько не смущает. Но для R он почему–то не знает, как понимать порядок, и вдается тут в сложное рассуждение.
Однако не будем на этом настаивать. Закроем глаза на то, что в определении порядка здесь уже фигурирует категория порядка и неизвестное определяется здесь через другое неизвестное. Что же дальше? Зачем понадобился этот переход к «остаткам» и какое это имеет отношение к идее порядка? Тут, однако, необходимо указать, что математик пошел на ощупь вполне правильно. Хотя в смысле принципиальной мыслимости и не существует никакого неупорядоченного множества, но мы можем условно занять такую позицию, что есть некое множество, но что в нем все спутано и неразличимо и является как бы бесформенной глиной или песком. Как при такой позиции прийти к идее упорядоченности? Очевидно, необходимо прежде всего отбирать из этой глины те или другие порции, для того чтобы потом их как–нибудь обделать, объединить и придать им ту или иную форму. Первое свойство множества о котором говорилось выше, и есть, очевидно, не что иное, как распределение алогической массы множества на отдельные взаиморазличимые куски, о величине которых можно судить и которые являются один в отношении другого целым или частью. Но если это так, то философский смысл первого свойства заключается в том, что тут элементы множества А/ перестают мыслиться в своей отвлеченности, но что они переходят в свое инобытие и в нем воплощаются. Когда мы берем элемент тх и смотрим на то, что еще остается в А/, то хотя этот остаток по условию еще и мыслится неупорядоченным, но уже гораздо в меньшей степени, мы как бы уже видим здесь, где он начинается и где кончается. Изрезавши все множество R на такие куски (путем противопоставления данного куска соответствующему элементу из А/), мы, очевидно, получаем не что иное, как то же самое множество А/, но уже как отраженное на R, и само–то R оказывается не чем иным, как множеством всевозможными способами полученных следов всех элементов А/, множеством всевозможного воплощения всех отвлеченных элементов этого последнего на его алогическом материале. Действительно, так оно и должно быть: порядок предполагает, что есть отвлеченная идея и есть реальный, но алогический материал, который этой идее подчиняется. Так вот, кромсание этого материала на куски, которые потом превратятся в упорядоченные элементы, есть первый необходимый этап упорядочивания, и смысл этого первого свойства множества /?, очевидно, сводится к переходу отвлеченного элемента в свое инобытие, причем переход тут совершается пока не целиком, а только по факту элемента: элемент получил для себя инобытийную субстанцию, но она еще остается без воплощения подлинного смысла элемента, остаётся грубым и необработанным куском.
с) Перейдем ко второму свойству множества R. Здесь утверждается, что если имеется в А/ два каких–нибудь элемента, из которых один позже другого (опять предполагается идея порядка!), то в должен быть хотя бы один остаток, содержащий в себе один из этих элементов. При этом если идея порядка здесь подлинно функционирует, то этот остаток должен содержать в себе именно позднейший элемент из этих двух, так как остаток, соответствующий элементу ти может содержать в себе элементы только высшие, чем ти а
Это фиксируется в третьем свойстве множества R.
d) Если теперь оглянуться на весь пройденный путь в определении множества /?, то можно, очевидно, так понимать это определение. В § 48. 3 мы уже столкнулись с понятием т. н. Potenzmenge, т. е. множества всех подмножеств данного множества, причем его мы понимали как объединение всех частей (а не элементов) данного множества. Употребляя философскую терминологию, мы говорили, что Potenzmenge в отношении самого множества есть «все» в отношении «целого», причем это такое все, которое дано всевозможными способами комбинирования своих моментов, поскольку множество всех частей множества предполагает и взаимное перекрытие элементов последнего. Множество R, которое служит для упорядочения множества А/, есть, очевидно, не что иное, как именно это Potenzmenge. И тут заложена весьма важная идея. В самом деле, что такое целое, из которого исключена идея порядка? Что такое целое, в котором нет никакой конфигурации отдельных моментов? Очевидно, что только очень отвлеченно понимаемое целое — скорее принцип целого, чем само целое. Но что же тогда будет порядком этого целого, что внесет в него определенную последовательность моментов и создаст в нем четкую конфигурацию? Тут требуется, очевидно, внесение в это целое каких–то внутренних различий. Чтобы нечто получило структуру, необходимо внутри него отличить одно от другого. Но это значит внести в него некое инобытие. Чтобы была структура бытия, необходимо внести в него инобытие, так что оно уже само для себя оказывается своим инобытием. Оно заново осуществляется на этом инобытии, но осуществляется целиком, так что инобытие перестает быть чем–то внешним для него, а становится им же самим, т. е. его структурой, его упорядоченностью. Это инобытие, однако, может быть рассматриваемо и само по себе—стоит только отвлечься от того целого, которое мы воплощали. Ведь можно же, например, иметь идею карандаша и на ее основе изготовить самый карандаш, а потом забыть о существовании самой идеи карандаша (т. е. о том, что изготовленная вещь есть именно карандаш) и рассматривать карандаш просто как некое физическое тело, указывая, что вот это—дерево, вот это — графит, вот это — краска, вот это — цилиндрическая форма и т. д. Что это будет такое? Оно будет, конечно, тоже некой цельностью и, следовательно, множеством, но, раз мы забыли об идее карандаша, оно уже не будет для нас самим карандашом, не будет целым карандаша, но зато будет всеми частями, всем, из чего состоит карандаш. Это есть Potenzmenge карандаша; и это–то, как ясно, и есть то, что вносит в отвлеченную идею карандаша определенную последовательность ее элементов. Это наше множество R с указанными тремя свойствами.
е) Таким образом, математическая мысль, установившая в этом виде самую идею порядка (или упорядоченного множества), действовала здесь хотя философски и слепо, но на ощупь шла правильно. Наша задача — внести в эту математическую мысль философско–логичес–кую ясность, которая и будет достигнута, как это ясно из предыдущего, следующим образом.
1) Идея порядка как таковая не может быть «определена», поскольку она является исходной; и мы видели, что Френкель ее вовсе даже не определяет, а предполагает готовой и только рассуждает о сфере ее применения. Но можно часто увидеть в ней то последнее зерно, которое остается неизменным при всех возможных ее функционированиях. 2) Это зерно заключается (и это особенно видно на втором свойстве множества R) не в чем ином, как в категории подвижного покоя. Второе свойство только ведь о том и говорит, что от одного момента можно перейти к другому. 3) Эта категория подвижного покоя может, однако, по–разному применяться в зависимости от сферы своего функционирования. Мы можем ее понимать а) отвлеченно–арифметически. По–видимому, это именно понимание Френкель имеет в виду, когда он говорит о том, что тх раньше т2 (или наоборот). В таком виде идея порядка в собственном смысле еще не нарушается. Это скорее принцип порядка, чем самый порядок («инобытийно–нулевая упорядоченность»). Совсем другое получится, если категория подвижного покоя b) перейдет в свое инобытие и начнет в нем воплощаться. Это создаст тот материал, без которого не может быть и самого порядка (поскольку порядок есть всегда порядок чего–нибудь). Однако в чисто инобытийном смысле категория подвижного покоя дала бы геометрическую, а не теоретико–множественную упорядоченность. Необходимо ей из инобытия вернуться к себе, т. е. все эти инобытийные, геометрические «части» положить в себе, в сфере чисто числовой, отождествить с чистым смыслом, поднять в свою сферу. Тогда эти «части» получают опять чисто числовой характер, но уже с той идеей расставленности и распределенности, которая была характерна для чистого инобытия. Это и есть теоретико–множественная упорядоченность. 4) Следовательно, в упомянутом математическом определении упорядочивающего множества мы имеем не определение порядка, но — на основе уже имеющейся определенной идеи порядка — конструирование именно теоретико–множественной упорядоченности, возникающей в отличие от абстрактной идеи порядка на основе инобытийно–алогических модификаций. Все это, с одной стороны, подтверждает правильность защищаемого в нашем исследовании места как самой идеи порядка, так и всей теории множеств, с другой же — показывает слепую и бессознательную целесообразность математической мысли, идущей своими путями без философских методов и логической выучки.
О Существует еще иное определение порядка — при помощи понятия упорядоченной пары и однозначной функции [32] . Но чтобы не затягивать изложения, мы не станем его анализировать.
1. Согласно аксиоме подвижного покоя, математическая вероятность должна быть такова, чтобы было видно, как она переходит в другую вероятность и как ее движение на этом останавливается. Чтобы выявить свое движение, вероятность, очевидно, должна в самой себе таить свое изменение. Как это возможно? Пусть мы имеем некое событие А, и пусть его вероятность равняется а. Чтобы вероятность оказалась в движении, надо событию А некоторым образом меняться. Если событие А мыслится некоторым образом в процессе изменения, то и вероятность его а, очевидно, тоже окажется изменяющейся. Но поскольку никаких иных причин и событий, кроме А, мы не знаем, остается, чтобы самое осуществление этого А повлекло за собою появление новых факторов и новых событий, способных изменить содержание нашего А. Другими словами, если вероятность приходит в движение, то это значит, что она относится к событиям взаимно зависимым, т. е. к совмещению событий. Действительно, та вероятность, с которой мы имели дело при изучении аксиомы самотождественного различия (§ 49.8), касалась событий, независимых одно от другого, и это мы там подчеркивали. Поэтому одна вероятность там только отличалась от другой и отождествлялась с ней, но не было видно, как она переходит в другую. Теперь же по факту самой вероятности, по ее осуществлению мы начинаем видеть, как она становится другой вероятностью, подобно тому как в арифметике за а следует b, и если уже за а следует 6, то необходимо сказать, что Ъ возникает после а, что, следовательно, между этими двумя числами существует строго определенный порядок. Но в теории вероятностей мы оперируем не просто с числами, а с числами в зависимости от случайных фактов, с числами как структурами бытия случайного.
32
Hausdorff. Grundz., 70.
Поэтому тут мало будет выставить утверждение, что если а >6, то b<а. Это утверждение было бы арифметическим, а не теоретико–вероятностным. Значит, необходимо ввести идею порядка в зависимости от случайного бытия, т. е. в зависимости от самого события, от голого алогического факта, от осуществления факта. Само это осуществление вероятности должно повлечь за собою ее движение, ее определенную изменяемость. Это, однако, есть учение о вероятности не просто событий, но совмещения событий.