Химия в бою
Шрифт:
Как видно, химической науке принадлежит важная роль в развитии боеприпасов, а значит, и стрелкового оружия, артиллерии в целом. Она позволяет решать сложные и часто необычные проблемы военного дела.
ТОПЛИВНЫЕ ЭЛЕМЕНТЫ. ЧТО ЭТО ТАКОЕ?
Интенсивное насыщение современных вооруженных сил сложной боевой техникой резко увеличило, особенно за последнее десятилетие, число потребителей электроэнергии. По свидетельству иностранных специалистов, уже сейчас войсковое электроснабжение выросло в серьезную проблему, поиски решения которой ведутся в двух основных направлениях. Первое состоит в совершенствовании энергетических устройств и агрегатов,
Если задаться вопросом, откуда в технике берется энергия вообще, то окажется, что основной ее источник— различные виды топлива: дрова, уголь, нефть, газ. Вклад химической энергии топлива составляет при-
Мерно 97,5 процента от всей потребляемой на нашей планете энергии. А как она используется? Далеко не самым выгодным способом. Химическая энергия топлива превращается, например, в электрическую, так сказать, окольным путем, через посредников в виде энергии тепловой и механической. Вспомните: прежде чем тепловая электростанция даст ток, надо сжечь топливо и получить пар, который начнет вращать турбину, а та — электрогенератор. А такое посредничество накладно: даже наиболее совершенные тепловые электроэнергетические установки имеют коэффициент полезного действия не выше 45 процентов. Значит, больше половины энергии топлива буквально вылетает в трубу.
К главному изъяну подобных электроагрегатов добавляются еще и такие, как сложность устройства, громоздкость, недостаточная эксплуатационная надежность, шум, вибрации, тепловое излучение, сопровождающие их работу. Перечисленные недостатки органически связаны с многоступенчатым принципом получения электроэнергии. Пытаясь обойтись здесь без участия котла, цилиндра и турбины, специалисты обратились к электрохимии.
Как известно, в принципе получать электроток можно и прямо, непосредственно используя химическую энергию. Так, собственно, и происходит в обычных гальванических элементах, например в батарейках для карманного фонаря. Стоит лишь нажать кнопку, и электролампочка загорается. Устройство такого элемента несложно: две металлические пластины (их называют электродами) помещают в электролит, представляющий собой кислоту, щелочь или соль. Химические реакции, в которые вступают электролит и электроды, вызывают обмен электронами между металлом и электролитом. Если теперь соединить электроды проводом, то по нему потекут электроны — электрический ток. Так будет происходить непрерывно, пока идет химическая реакция.
Однако обычные гальванические элементы содержат ограниченное количество веществ, участвующих в реакции. Через некоторое время, когда они израсходуются, элемент прекращает давать ток. Вот почему все попытки усовершенствовать гальванические элементы, увеличить их мощность и продолжительность действия, не принесли существенного успеха.
Совершенно иные возможности открываются, если непрерывно пополнять убыль веществ, участвующих в реакции токообразования, и при этом использовать распространенные виды топлива. Такими источниками тока стали электрохимические генераторы, получившие название топливных элементов.
Надо сказать, что в общих чертах идея топливных элементов зародилась давно, более 100 лет назад. Однако осуществить ее оказалось гораздо сложнее, чем предполагали вначале. Лишь многолетнее развитие электрохимической теории, достижения металлургии, автоматики и других отраслей науки и техники позволили в последние годы создать топливные элементы, пригодные для практического использования.
Полыхает костер, бушует в печи пламя… Каждый повседневно встречается с таким горением и знает, что оно сопровождается высокой температурой. А химик добавит, что при подобном химическом горении происходит окислительно-восстановительный процесс между горючим веществом (топливом) и окислителем (кислородом). При этом
Такие окислительно-восстановительные процессы характеризуются случайным перемещением атомов и молекул окислителя и топлива, между которыми идет непрерывный обмен электронами. Что это значит с энергетической точки зрения?
Известно, что энергетический уровень атомов определяется строением их внешней электронной оболочки, которая может иметь определенное количество электронов. Атомы горючих и окислительных веществ имеют внешние оболочки, заполненные электронами не полностью. Если взять горючим водород, то у него на внешней оболочке «недостает» одного электрона, хотя оболочка позволяет иметь два. В атоме же окислителя — кислорода «не хватает» двух электронов (до восьми). Заполнение внешней оболочки электронами вызывает уменьшение энергетического уровня атома. Таким образом, обмен электронами между атомами топлива и окислителя в процессе горения можно рассматривать как переход электронов с высшего энергетического уровня на низший. А он сопровождается высвобождением энергии в виде тепла, которое, как уже было сказано, невозможно полностью обратить в полезную работу
Важно отметить и другое. Поскольку обмен электронами при химическом горении происходит хаотично — с различными скоростями и в различных направлениях, — возникновение электрического тока исключается. Тут, если так можно выразиться, идет процесс бесчисленного множества «коротких замыканий» между атомами и молекулами, имеющими различные электрические потенциалы.
Другое дело, если исключить хаотическое перемещение электронов, сообщить им направленное движение. Тогда энергия реакции почти полностью пойдет на образование электрической энергии. Химическое горение топлива с высокой температурой, таким образом, превратится в холодное, электрохимическое. В горение без пламени. Именно оно и используется в топливных элементах для получения постоянного электрического тока.
Топливный элемент во многом напоминает обычный гальванический: те же два специально обработанных металлических электрода, разделенные электролитом. Отличие в том, что к одному электроду топливного элемента непрерывно подводится топливо, а к другому — окислитель, и так, что исключена возможность их смешивания.
Принципиальное устройство топливного элемента удобно проиллюстрировать на водородно-кислородном элементе (рис. 11). Пространство корпуса 1 разделяется электродами 6 и 9. По каналу 10 в пространство Н подается водород — топливо, а по каналу 5 в пространство О2 подается кислород — окислитель. Через каналы 7 и 5 пропускается электролит — концентрированный раствор едкого калия (КОН).
На кислородном электроде 6 кислород поглощается. В результате процессов его взаимодействия с водой, находящейся в электролите, и электронами из металла электрода образуются ионы гидроксильной группы ОН. Кислородный электрод, потерявший электроны и оказавшийся обедненный ими, принимает положительный потенциал.
На водородном электроде 9 поглощается водород. Он переходит из молекулярного состояния в атомарное. Поглощенные атомы ионизируются и переносятся в электролит, оставляя электроны на электроде. Водородный электрод оказывается обогащенным электронами и принимает отрицательный потенциал.
Суммарная реакция на кислородном электроде может быть представлена формулой:
O2 + 2Н2O + 4е—– > 4OН;
а на водородном электроде:
Н2 -> 2Н+ + 2е—