Интернет-журнал "Домашняя лаборатория", 2007 №5
Шрифт:
А еще вы можете придумывать опыты самостоятельно. В начале книги мы вас от этого отговаривали, но тогда у вас не было навыков и практики; теперь же вы освоили многие технические приемы и познакомились с безопасными способами работы. Все предупреждения — о бесцельном сливании реактивов, о чрезмерно больших количествах реагирующих веществ и о прочих ошибках начинающих химиков — остаются в силе. И самое главное: надо четко представлять себе, как идет реакция, что и при каких условиях получается в результате. Для этого прежде всего надо познакомиться с теорией. По школьному ли учебнику, по более серьезному руководству, по журнальной статье. А еще лучше посоветоваться со знающим человеком — с учителем химии, с руководителем химического кружка, И только потом аккуратно и не торопясь ставить опыт.
Будем считать, что вся эта книга — не сборник наставлений для начинающих химиков, а предисловие к будущей самостоятельной работе. И если эти опыты хоть в какой-то мере помогут вам утвердиться в решении посвятить себя химии, то, значит, все, кто готовил эту книгу, старались не зря,
МЫШЛЕНИЕ
Г. Ивченков
1. Введение
Современное положение в теории электромагнетизма не может считаться удовлетворительным. Фундаментальные исследования в этой области прекратились более ста лет назад, когда теоретики электромагнетизма посчитали, что все законы открыты и все явления объяснены, а практики нашли, что этих законов вполне достаточно, чтобы создать работающие машины. Однако, за время интенсивного практического применения электромагнетизма накопилось большое количество парадоксальных явлений, необъяснимых с точки зрения современной науки и, даже, появились работающие электрические машины, которые, опять же, согласно современной науке, не могут работать, такие как «униполярный генератор» [1, 2], мотор Маринова [3, 4] и т. п. Кроме того, ряд очевидных электромагнитных природных явлений, таких как шаровая молния и электрофонные метеориты (метеориты, создающие очень сильные электромагнитные поля) не находят вразумительного объяснения и, соответственно, не могут быть воспроизведены в лаборатории. В частности, непонимание механизма шаровой молнии (являющейся чисто МГД образованием), свидетельствует о неполноте современных знаний об электромагнетизме, что, например, привело к 50-летнему застою в создании магнитных ловушек для термоядерной плазмы. Только благодаря огромному количеству экспериментов (50-летняя эдиссоновщина) удалось продлить время удержания плазмы до порядка 2 секунд (сравните с минутами у шаровой молнии). На эти работы были потрачены миллиарды долларов — такова плата за невежество физиков-теоретиков. Далее, в учебниках и справочниках (в частности [5, 6, 7]) вы очень часто не найдете ответа на конкретные практические задачи, такие, например, как экранирование магнитного поля, особенно, постоянного и движущегося [11]. Даже в элементарных вещах, преподаваемых в школе, царит неразбериха — очень часто путают фарадеев и лоренцев механизмы наведения ЭДС и создания электродвижущей силы. Например, закон Ампера (правило левой руки), вообще-то являющийся следствием проявления лоренцевой силы, «по умолчанию» считается следствием фарадеева механизма [6]. Если вы проведете ревизию формул и положений, записанных в учебниках и справочниках, то выявится масса несуразностей, завуалированных в университетских учебниках тяжело проходимым лесом математического формализма, что и было отмечено в ряде статей, например [9, 10]. Дело усугубляется сведением всей природы магнитного поля к круговым токам и вовлечением в электромагнетизм теории относительности (СТО и ОТО). Некоторые авторы считают электромагнетизм прямым следствием теории относительности Эйнштейна (и это при скоростях дрейфа электронов в сантиметры в секунду и отсутствии искажения пространства-времени даже в самых сильных магнитных полях!). Наиболее ярко этот подход отражен в «Берклеевском курсе физики», (том II, Э. Парселл, Электричество и магнетизм) [7]. Прочтение этой книги вызывает чувство раздражения и неуважения к автору данного учебника.
У автора данной статьи, по началу, не было никакого желания проводить эксперименты по проверке и уточнению фундаментальных законов электромагнетизма. Такая необходимость появилась в процессе проведения исследований по вполне конкретной практической задаче — экранированию движущегося магнитного поля. После выяснения полной несостоятельности положений, описанных в доступных учебниках и справочниках (например, в [5, 6, 7, 11]), пришлось провести ряд экспериментов, связанных с изучения этого явления, моделируя движение магнитного поля движением постоянного магнита. Несоответствие полученных результатов общепринятым законам электромагнетизма привело к необходимости проведения других экспериментов, связанных с уточнением некоторых фундаментальных положений теории электромагнетизма. Эти эксперименты привели к некоторым нетривиальным выводам, позволили уточнить принципы наведения фарадеевой ЭДС для случая движущегося носителя магнитного поля, уточнить принцип Ленца и открыть механизм тангенциальной индукции, что, в свою очередь, позволило предложить ряд электрических машин, использующих этот принцип. Прототипы этих машин были созданы и испытаны автором.
2. Схема эксперимента
На Рис. 1 приведен пример схемы измерения ЭДС, индуцированной в униполярном генераторе. Аналогичные схемы применялись для измерения ЭДС, вырабатываемой другими электрогенераторами, исследованными автором (схемы приведены в соответствующих разделах).
Рис. 1
Во всех ниже перечисленных экспериментах (кроме измерений крутящих моментов) ротор, содержащий однородный или составной постоянный магнит был закреплен в шпинделе малогабаритного сверлильного станка (1), а для магнитной экранировки нижнего проводника (используемой в некоторых
Были также проведены эксперименты с инвертированными электрогенераторами — электромоторами. В этих экспериментах измерялся их стартовый момент кручения. Схема измерения приведена на Рис. 2.
Рис. 2
Ротор (статор) был подвешен на медной проволоке диаметром 0.38 мм, которая являлась торсионом, на котором поворачивался ротор (статор). Фактически, данная конструкция, измеряющая крутящий момент, являлась разновидностью крутильных весов. На торсионе было закреплено зеркальце, на которое был направлен луч лазера. Установка была прокалибрована в гс см. Точность измерения момента составила порядка 0.15 гс•см.
Надо отметить, что все описанные в данной статье эксперименты легко могут быть повторены всеми желающими, для этого необходим минимум оборудования. Вообще-то, эти эксперименты могли бы быть проведены во времена Ампера и Фарадея, правда, тогда не было двухлучевых осциллографов и сильных магнитов.
3. Задача эксперимента
Основной целью экспериментов было исследование механизмов наведения ЭДС в случае движущегося носителя магнитного поля. На это натолкнул известный парадокс «униполярного генератора», в котором ЭДС наводится только в движущемся проводнике и не наводится при движении магнита относительно проводника [1, 2]. При этом безразлично, относительно движущегося или неподвижного магнита движется проводник — ЭДС в обоих случаях одинаково. Кроме того, известно, что однородное магнитное поле не предает тангенциальных сил, что широко используется в магнитных подшипниках [14], поездах на магнитной подушке и т. п. Таким образом, можно было предположить, что магнитное поле является статическим образованием и не движется с его носителем. Для проверки этого предположения автором была проведена большая серия экспериментов с движущимися (вращающимися) магнитами, как однородными, так и составными. Полученные результаты, в частности, были использованы для создания ряда электромашин, модели которых были также исследованы. Объем данной статьи не позволяет привести описание и анализ всех проделанных экспериментов, так как каждому эксперименту (например, исследованию «униполярного генератора») может быть посвящена отдельная статья. Поэтому в данной статье приведено краткое описание только некоторой части из этих экспериментов, имеющих отношение к эффекту тангенциальной индукции.
Надо также отметить, что при анализе результатов экспериментов автор старался, по возможности, использовать общепринятые законы и формулы электромагнетизма. В статье практически отсутствуют математические выкладки, упор сделан на физический смысл изучаемых явлений.
4. Механизмы индуцирования ЭДС — обзор и вопросы
По поводу механизмов наведения ЭДС (и, соответственно, выработки механической энергии — для моторов). Их, собственно, два — фарадеев и лоренцев. Это что, разные механизмы или же проявления одного и того же механизма? Ответа на это нет ни в одном учебнике. Если это разные механизмы, то могут ли они работать одновременно? Складываются или вычитаются?
Надо отметить, что:
• Вообще-то, фарадеев — это статический механизм не связанный с движением проводника и поля (если только при движении носителя поля не меняется его напряженность, но и в этом случае это также статика).
• Лоренцев — чисто динамический — движение проводника (электрических зарядов) в магнитном поле. Но какое движение — абсолютное или относительное? Если — относительное, то движение носителя поля относительно проводника и движение проводника относительно носителя поля — это одно и то же? Согласно современным представлениям (принятым, кстати, по умолчанию, прямых указаний в литературе на это нет — вроде как, само собой разумеется) — это одно и тоже. Но ряд экспериментальных результатов противоречит этому положению. В связи с этим, можно предложить две гипотезы:
• Первая гипотеза — Поле движется вместе с носителем (магнитом).
• Вторая гипотеза — Поле окружает магнит (как облако) и его напряженность в данной точке может меняться только в случае если движущийся (вращающийся) магнит имеет неоднородности. То есть, магнитное поле есть скалярное образование.
Первая гипотеза является, как бы, общепринятой. Кроме того, путаница с двумя механизмами наведения ЭДС, которые, в большинстве случаев трудно отделить друг от друга, затрудняет проверку этих гипотез (а результат всегда трактуется в пользу первой гипотезы).