Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №5
Шрифт:

Анализ результатов

В данных экспериментах лоренцев механизм не участвовал в создании ЭДС «по определению». Следовательно, за ЭДС наведенную в проводниках 1–2 и 3–4 ответственен фарадеев механизм, но принцип и формула, описывающие наведение фарадеевой ЭДС для каждого отдельного проводника отсутствуют.

В этом случае для качественного объяснения результатов эксперимента автор воспользовался законом Фарадея и принципом Ленца, но в модифицированном виде:

• Наведенная в проводнике ЭДС является функцией dB/dt (точнее, производной циркуляции вектора В по времени) в месте расположения проводника, а не производной суммарного потока dФ/dt.

• При этом, ток, создаваемый наводимой в проводнике ЭДС вызывает циркуляцию магнитного поля

которая стремиться скомпенсировать изменение циркуляции в месте расположения проводника.

Вышеизложенный принцип можно назвать «модифицированным принципом Ленца».

Как будет показано ниже (разделы 8, 10), постоянные магниты (в частности, кольцевой) имеют две оси противоположной циркуляции — внешнюю и внутреннюю, которые можно представить, как две проводящие петли с током, текущим в противоположных направлениях. В частности, для кольцевых ферритовых магнитов (см. раздел 2) этот постоянно текущий «ток» составляет порядка 40 А. Для составного магнита «токи», текущие а этих «осях» меняют знак и, следовательно, при вращении магнита циркуляция вектора В (и Н), охватывающая неподвижную полупетлю периодически возрастает, убывает и меняет знак. Таким образом, в контуре циркуляции вектора Н, созданной постоянным магнитом, оказывается полупетля. Фактически, здесь имеет место случай взаимной индукции как в трансформаторе (но, опять же, для отдельного проводника, а не для контура), которая и наводит в проводнике ЭДС, которая, в свою очередь, создает циркуляцию магнитного поля, стремящуюся скомпенсировать это изменение (согласно приведенному выше «модифицированному принципу Ленца»). Эксперимент показывает, что полярность, форма и амплитуда сигнала одинаковы для полупетель, расположенных спереди и сзади от магнита (Рис. 6), а также, для полной петли (Рис. 8).

Основываясь на «модифицированом принципе Ленца» можно качественно проанализировать механизм появления ЭДС в полувитках (Рис. 9).

Как можно видеть, в момент, когда полувитки охватывают половины магнита с разными полюсами (положение А), циркуляция магнитного поля в месте расположения полувитков, создаваемая магнитом, максимальная. При повороте магнита в положение В она уменьшается, т. к. полувитки «переезжают» на другую половину магнита с противоположной полярностью. Чтобы скомпенсировать это уменьшение, в полувитках возникает ток создающий циркуляцию магнитного поля, совпадающую с циркуляцией поля магнита и компенсирующей это уменьшение. На Рис. 9 видно, что эти токи направлены в одну сторону, что и подтверждается экспериментом. ЭДС, наведенная в полувитках равна 0 (меняет знак) в момент показанный на Рис. 9, когда полувитки полностью охватывают половины магнита с разной полярностью и достигает максимума, когда середины полувитков совпадают с плоскостью раздела магнитов.

Кроме того, в данном случае, магнит вращается внутри контура, образованного двумя полукольцами 1–2 и проводниками, соединяющими точки 1 и 2 с нагрузкой, и, следовательно, суммарное магнитное поле внутри контура не меняется и, таким образом, ЭДС не должна наводиться. Исходя из этого можно предположить, что формула Е = — dФ/dt является частным случаем более общего закона Е = ?ei?l, где е = f(dB/dt) — ЭДС, локально наводимая в элементе проводника ?l.

Таким образом, интегральная формула Фарадея в данном случае не работает и, согласно известным законам электромагнетизма, ЭДС в кольце и полукольце не должна наводиться, в то время, как эксперимент показывает наличие существенной ЭДС. Такой механизм наведения ЭДС в тангенциальных проводниках может быть назван «тангенциальной индукцией».

Кроме того, в случае «тангенциальной индукции» сразу возникает вопрос о силовом взаимодействии ротора и статора. Очевидно, что, согласно 3-му закону Ньютона для вращательного движения, крутящий момент ротора должен быть равен и противоположен крутящему моменту, создаваемому в статоре под нагрузкой (трение в подшипниках не учитывается). Силы, возникающие в тангенциальных проводниках

в магнитном поле ротора при протекании в них нагрузочного тока, направлены строго радиально, их векторы проходят через центр массы (ось) статора и, соответственно, не создают крутящего момента, а только растягивают и сжимают тангенциальные проводники статора в радиальном направлении. Следовательно, отсутствует обмен моментами между ротором и статором, и ротор, вращаясь, вырабатывает электроэнергию в статоре без механического сопротивления!

Тут возможны два варианта:

• Генератор, действительно, не создает тормозящий момент (что позволяет создать «вечный двигатель» и противоречит 3-му закону Ньютона).

• Существует некий механизм создания тангенциальной силы в случае тангенциальной индукции. В этом случае, законы электромагнетизма должны быть пересмотрены и дополнены.

Здесь еще раз надо отметить принципиальные особенности фарадеевого и лоренцева механизмов:

• Оба механизма могут быть разделены, то есть, в одном случае может работать только фарадеев механизм, в другом — только лоренцев.

• Для каждого из этих механизмов должны существовать свои законы и формулы, описывающие как наведение ЭДС, так и создание силы.

• Формула Фарадея является интегральной и применима только для замкнутых контуров, при этом учитывается только магнитный поток, пересекающий плоскость контура и ограниченный этим контуром. Это вписывается в официально принятую трактовку электромагнетизма, единственно трактующего магнитное поле как результат круговых токов — циркуляции электрических зарядов, происходящих на макро и микро уровнях. В то же время, результаты проведенных в данной работе экспериментов дают достаточные основания предположить, что механизм Фарадея — Ленца должен быть также применен к отдельным проводникам, образующим контур.

• В то же время, лоренцев механизм не связан с замкнутым контуром и работает для каждого отдельного элемента проводника (заряда). При этом лоренцев механизм позволяет объяснить (и рассчитать) как наведенную ЭДС, так и возникающих) при этом силу.

• Закон Ампера («правило левой руки»), скорее всего, является проявлением лоренцевой силы и не имеет отношения к фарадееву механизму.

Следовательно, для случая фарадеева механизма, отсутствуют:

• Принцип и формулы, описывающие наведение ЭДС в отдельных проводниках, образующих контур.

• Принцип и формулы, описывающие силовое взаимодействие источников переменных статических магнитных полей (исключая формулы, основанные на законе сохранения, которые не раскрывают физического смысла взаимодействия).

Иллюстрацией отсутствия закона, описывающего силовое взаимодействие, для фарадеева механизма может быть следующий пример:

Предположим, что замкнутый плоский контур помещен в однородное магнитное поле и вектор магнитной индукции В перпендикулярен плоскости контура. Интенсивность поля начинает меняться, при этом в контуре наводится ЭДС и течет ток, создающий поле, стремящееся скомпенсировать это изменение (принцип Ленца). Тогда, согласно закону Ампера, на проводники контура действуют радиальные силы, которые компенсируют друг друга и контур остается неподвижным, только сжимается (при возрастании поля) или растягивается (при убывании поля). Это, фактически, означает, что механическое взаимодействие контура с магнитным полем (и его носителем) отсутствует, хотя в контуре течет ток и вырабатывается энергия. Аналогичный случай описан выше, когда в тангенциальных проводниках наводится ЭДС, а ток нагрузки, согласно закону Ампера, не создает реактивного момента.

8. Взаимодействие вращающегося магнита с неподвижными радиальными проводниками.

При исследовании «тангенциальной индукции» возникает вопрос, а какой вклад вносят радиальные проводники, соединяющие полукольцо (кольцо) с нагрузкой, ведь в них также может наводиться ЭДС. Для ответа на этот вопрос была проведена серия экспериментов.

В этих экспериментах у поверхности составного вращающегося магнита (примененного в предыдущем эксперименте) были расположены неподвижные проводники (см. Рис. 10) при этом измерялось наведенная в них ЭДС.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7