Интернет-журнал "Домашняя лаборатория", 2007 №5
Шрифт:
Т.е. если вместо проводящего диска поместить проводник (4–5) жестко закрепленный на магните (в принципе, диск работает так же — набор радиальных проводников, но для ясности лучше использовать единичный проводник, правда, возникает проблема с коллектором), то образуется контур 1-2-3-4-5 состоящий из неподвижных проводников 5–1, 1–2, 3–4 и нагрузки 2–3. В этом случае
Фарадеев механизм заведомо не работает в подвижном проводнике, а в неподвижных проводниках может наводиться и Фарадей и Лоренц (если поле движется вместе с магнитом — первая гипотеза) или только Фарадей (если поле стоит — вторая гипотеза).
В следующем эксперименте напряжение снималось не с края диска, а со щетки 6 (все электроды и щетки — немагнитные) скользящей
Осциллограммы сигнала, полученные на разных расстояниях от оси диска представлены на Рис. 5
Рис. 5
Сигнал, полученный при нахождении щетки на оси диска (осциллограмма а) имеет трапециидальную форму с провалами в вершине трапеции (Е = ± 2.5 мВ). Далее, по мере смещения щетки по радиусу от оси, амплитуда сигнала падает (форма остается той же), а на некотором расстоянии от оси (осциллограмма Ь) сигнал исчезает. При дальнейшем движении щетки сигнал меняет фазу и становится близким к синусоиде с амплитудой на краю диска равной ± 2 мВ (нижняя осциллограмма).
При вертикальном расположении проводника, соединяющего щетку 6 с нагрузкой форма и амплитуда сигналов несколько меняется.
В частности, сигнал, полученный при нахождении щетки на оси диска при вертикальным расположении проводника, соединяющего щетку с нагрузкой, близка к синусоидальной, а амплитуда — меньше амплитуды сигнала (осциллограмма а, Рис. 5) и составляет ± 1.5–2 мВ. По мере передвижения щетки от оси (расположение проводника — вертикальное) форма сигнала становится сглаженной трапециидальной, а амплитуда слегка увеличивается (± 2.5 мВ). Далее амплитуда быстро падает и достигает 0 на некотором расстоянии от оси диска, причем это расстояние меньше, чем в случае горизонтального проводника. Далее фаза сигнала меняется и на краю диска сигнал имеет форму близкую к синусоидальной с амплитудой ± 2 мВ — то есть сигнал становится таким же, как на осциллограмме с (Рис. 5).
Анализ результатов
Можно с достаточным основанием предположить, что в данном случае два механизма, фарадеев и лоренцев, действуют одновременно, создавая ЭДС с противоположной полярностью. В этом случае фарадеева ЭДС наводится на неподвижных участках контура — в проводнике, соединяющим щетку 6. Эта ЭДС (форма и амплитуда) сильно зависит от положения проводника 1 горизонтального или вертикального так как индукция В (и ее производная dB/dt) в местах расположения проводника в этих случаях имеет разное значение. По мере перемещения проводника фарадеева ЭДС уменьшается (за счет его выдвижения из поля магнита), а лоренцева, наводимая во вращающейся части контура (часть диска между осью и щеткой) — возрастает по мере увеличения расстояния между щеткой и осью. На расстоянии R (R2 — для вертикального проводника и R1 — для горизонтального) они компенсируют друг друга (Еф = Ел), при этом на осциллограмме видны небольшие неоднородности (< 0.5 мВ) вызванные неодинаковой формой сигналов (фарадеевого и лоренцева). Далее лоренцев сигнал преобладает, а фарадеев уменьшается практически до 0 на краю диска. Т. к. фарадеев сигнал для горизонтального проводника (расположенного у поверхности магнита) больше, чем для вертикального, а лоренцев в этих случаях один и тот же (расстояние щетки от оси диска одно и то же), то очевидно, что расстояния, где оба сигнала компенсируют друг друга будут разные (R1 больше R2).
Таким
• Сигнал, снимаемый с края диска обусловлен только лоренцевым механизмом.
• Данный эксперимент может служить доказательством того, что и в униполярном генераторе с однородным магнитом (раздел 5) ЭДС наводится в диске за счет лоренцевого механизма.
7. Униполярный генератор с неоднородным магнитом и неподвижными проводниками (магнит вращается), исключающий возникновение лоренцевой ЭДС
Для разделения механизмов наведения ЭДС был проведен эксперимент, где были созданы условия, исключающие возникновение лоренцевой ЭДС.
В этом эксперименте к двухполярному вращающемуся магниту на его боковой цилиндрической поверхности был помещен неподвижный проводник 1–2 в форме полупетли, который плотно прилегал к цилиндрической поверхности магнита и, при этом скользил по ней (Рис. 6).
Рис. 6
Как можно видеть, лоренцова ЭДС здесь не может наводиться т. к. проводник направлен вдоль вектора скорости, т. е. вектор 1 по всей длине проводника параллелен вектору линейной скорости V.
В то же время, в эксперименте была зарегистрирована переменная ЭДС. Осциллограмма сигнала приведена на Рис. 7. Сигнал имеет форму достаточно близкую к синусоидальной с амплитудой ± 7 мВ (частота 17 Гц). При распрямлении петли (проводник 3–4) сигнал становится по форме близким к треугольнику. Амплитуда при этом уменьшается до ± 5 мВ. В этом случае лоренцова ЭДС также не наводится, т. к. вектор скорости и проводник лежат в одной плоскости.
Рис. 7
Далее, полупетля была помещена с другой стороны магнита. Фаза, форма и амплитуда измеренного сигнала оказались такими же как и для предыдущего случая (полупетля спереди).
Затем, две полупетли были соединены в полную петлю с выводами, расположенными по диаметру (Рис. 8).
Рис. 8
Фаза, форма и амплитуда измеренного сигнала оказались такими же как и для предыдущего случаев (полупетля спереди или сзади, см. Рис. 6).
После этого, петля была увеличена в диаметре (центр петли совпадал с центром магнита). В этом случае неподвижная петля не скользила по магниту, а отстояла от его некоторое расстояние. Полярность сигнала при этом осталась прежняя, форма сигнала существенно сгладилась, еще более приблизившись к синусоидальной, а амплитуда сигнала существенно упала (с ± 7 мВ непосредственно на цилиндрической поверхности магнита — 35 мм от оси — до ± 3.5 мВ на расстоянии 44 мм от оси).
В следующем эксперименте скользящая петля была заменена на проводящее кольцо жестко закрепленное на магните, а сигнал снимался щеткам, расположенными по диаметру. Полярность, форма и амплитуда сигнала оказались такими же, как и в предыдущих случаях.
Здесь надо отметить, что конструкция генератора, приведенная на Рис. 8 (петля с двумя выводами) очень напоминает «электромотор Маринова», названный так по имени его изобретателя — австрийского электротехника — только инвертированный (генератор) и с несколько другим магнитом (Рис. 9).
Рис. 9. «Мотор Маринова»
Можно предположить, что и генератор, конструкция которого приведена на Рис. также можно инвертировать и использовать как электромотор.