Чтение онлайн

на главную - закладки

Жанры

Истина и красота. Всемирная история симметрии.
Шрифт:

Два экземпляра вещественной числовой прямой, расположенные под прямым углом.

Комплексная плоскость, согласно Валлису.

Комплексное число состоит из двух частей: одна вещественная, другая мнимая. Чтобы указать положение заданного числа на плоскости, Валлис предложил своим читателям отмерить вещественную часть вдоль горизонтальной «вещественной» прямой, а затем отмерить мнимую часть вдоль вертикального

направления, то есть параллельно мнимой прямой.

Это предложение полностью решило вопрос о придании смысла мнимым и комплексным числам. Оно было простым, но эффективным — настоящей работой гения.

Оно было целиком и полностью проигнорировано.

Несмотря на отсутствие общественного признания, открытие Валлиса, должно быть, как-то просочилось в математическое сознание, поскольку математики бессознательно начали использовать образы, непосредственно связанные с основной идеей Валлиса: комплексные числа живут не на прямой, а на комплексной плоскости.

По мере того как математика становилась более разнообразной, математики переходили к вычислению все более сложных вещей. В 1702 году Иоганн Бернулли, решая некоторую задачу из анализа, столкнулся с проблемой вычисления логарифма комплексного числа. К 1712 году Бернулли и Лейбниц воевали по поводу следующего ключевого вопроса: чем является логарифм отрицательного числа? Если бы этот вопрос удалось решить, можно было бы найти логарифм любого комплексного числа, потому что логарифм квадратного корня из заданного числа равен просто половине его логарифма. Таким образом, логарифм числа iсоставляет половину логарифма числа -1. Но чему равен логарифм -1? Вопрос стоял просто. Лейбниц полагал, что логарифм числа -1 должен быть комплексным. Бернулли говорил, что вещественным. Бернулли основывал свое заключение на несложных выкладках из математического анализа; Лейбниц возражал, что ни сам метод, ни полученный ответ не имеют смысла. В 1749 году Эйлер разрешил это противоречие, всецело встав на сторону Лейбница. Бернулли, по его наблюдению, упустил кое-что из виду. Его выкладки из анализа носили такой характер, что ответ включал в себя добавление «произвольной постоянной». Полностью сосредоточившись на комплексном анализе, Бернулли молчаливо предполагал, что эта постоянная равнялась нулю. А она нулю не равнялась. Она была мнимой. Это упущение объясняло расхождение между ответами Бернулли и Лейбница.

Темпы «комплексификации» математики нарастали. Все больше идей, появившихся при изучении вещественных чисел, распространялись на комплексные числа. В 1797 году норвежец по имени Каспар Вессель опубликовал метод представления комплексных чисел точками на плоскости.

Каспар происходил из семьи священника и был шестым из четырнадцати детей. В то время в самой Норвегии университетов не было, но она находилась в унии с Данией, так что в 1761 году он отправился в Копенгагенский университет. Он и его брат Оле изучали право, причем Оле, чтобы пополнить семейный бюджет, подрабатывал землемером. Позднее Каспар стал помощником Оле.

Работая землемером, Каспар изобрел способ представления геометрии на плоскости — в особенности линий и их направлений — в терминах комплексных чисел. В ретроспективе мы видим, что его идеи означали представление комплексных чисел в терминах геометрии на плоскости. В 1797 году он представил свою работу — первую и единственную свою научную статью по математике — Датской Королевской Академии.

Едва ли кто-нибудь из ведущих математиков читал по-датски, и работа влачила «непрочитанное существование», пока через 100 лет ее не перевели на французский. Тем временем французский математик Жан-Робер Арган независимо предложил ту же идею и опубликовал ее в 1806 году. В 1811 году та же мысль, что комплексные числа можно рассматривать как точки на плоскости, — снова независимо — пришла в голову Гауссу. Названия «диаграмма Аргана», «плоскость Весселя» и «Гауссова плоскость» стали входить в обиход. Представители различных

наций склонялись к использованию различных способов выражения.

Завершающий шаг предпринял Гамильтон. В 1837 году, почти через триста лет после того, как из формул Кардано стала видна возможная польза от мнимых чисел, Гамильтон устранил геометрический элемент и свел комплексные числа к чистой алгебре. Его идея была проста; она неявно следовала из предложения Валлиса и в эквивалентной форме содержалась у Весселя, Аргана и Гаусса. Но никто из них не сделал ее явной.

Алгебраически, утверждал Гамильтон, точку на плоскости можно отождествить с парой вещественных чисел — ее координатами (x, y). Если посмотреть на диаграмму Валлиса (или Весселя, или Аргана, или Гаусса), то станет ясно, что xесть вещественная часть числа, а y— его мнимая часть. Комплексное число x + iy «на самом деле» есть лишь пара (x, y)вещественных чисел. Можно даже выписать правила для сложения и умножения таких пар, причем основной шаг состоит в наблюдении, что поскольку число iсоответствует паре (0, 1), произведение (0, 1)x(0, 1) должно равняться (-1, 0). По данному вопросу Гаусс также сообщает в письме к венгерскому геометру Вольфгангу Бойяи, что в точности та же мысль пришла ему в голову в 1831 году. Лис снова замел свои следы — причем опять никто ничего не заметил.

Задача решена. Комплексное число — это в точности пара вещественных чисел, оперировать которыми надо согласно списку простых правил. Поскольку пара вещественных чисел уже заведомо столь же «вещественна», сколь и одно вещественное число, вещественные и комплексные числа равным образом связаны с реальностью, а название «мнимые» только сбивает с толку.

Сегодняшние взгляды несколько отличаются от этого: сбивает с толку слово «вещественный». Как вещественные, так и мнимые числа равным образом представляют собой продукт человеческого воображения.

Реакцией на данное Гамильтоном решение задачи, стоявшей до этого в течение трех сотен лет, была полная тишина. Коль скоро математики уже включили понятие комплексных чисел в мощную последовательную теорию, страхи касательно существования комплексных чисел потеряли актуальность. Тем не менее использование пар чисел, как предлагал Гамильтон, оказалось очень важным. Хотя вопросу о комплексных числах перестал сопутствовать ажиотаж, идея о построении новых числовых систем из старых укоренилась в математическом сознании.

Комплексные числа оказались полезны не только в алгебре и основах анализа. Они позволили сформулировать мощный метод решения задач о потоке жидкости или тепла, о гравитации и звуке — почти в каждой области математической физики. Но у них было одно существенное ограничение: с их помощью эти задачи решались в двумерном пространстве, тогда как мы живем в трехмерном. Некоторые задачи, такие как задача о движениях мембраны барабана или о течении тонкого слоя жидкости, можно свести к размерности два, что совсем не так уж плохо. Но математиков все больше раздражало, что их методы, основанные на комплексных числах, не удавалось распространить с плоскости на трехмерное пространство.

Могли ли существовать еще не открытые расширения числовой системы на трехмерное пространство? Данная Гамильтоном формализация комплексных чисел как пары вещественных подсказывала подход к этой проблеме: постараться организовать числовую систему, основанную на тройкахчисел (x, y, z). Проблема состояла в том, что до тех пор никто не работал с алгеброй, образованной тройками чисел. Гамильтон решил попробовать.

Сложение троек не составляло проблемы: подсказка со стороны комплексных чисел состоит в том, что надо просто складывать соответствующие координаты. Такого типа арифметика, ныне известная как векторное сложение, подчиняется весьма симпатичным правилам, и имеется только один разумный способ ее реализации.

Поделиться:
Популярные книги

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Большая игра

Ланцов Михаил Алексеевич
4. Иван Московский
Фантастика:
альтернативная история
5.00
рейтинг книги
Большая игра

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Хроники разрушителя миров. Книга 8

Ермоленков Алексей
8. Хроники разрушителя миров
Фантастика:
фэнтези
5.00
рейтинг книги
Хроники разрушителя миров. Книга 8