Чтение онлайн

на главную

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:

Анализируя по табл. 5.7 динамику стандартных остатков, легко заметить, что своего максимума они достигли в августе и сентябре 1998 г.

Чтобы обратить внимание читателей к этим двум наблюдениям, их выделили жирным шрифтом. При этом можно увидеть, что в то время как стандартные остатки в августе 1998 г. оказались равны 2,931979 и были меньше трех стандартных отклонений, то в сентябре 1998 г. их величина составила 4,922042, приблизившись тем самым к пяти стандартным отклонениям. Таким образом, с уверенностью можно констатировать, что сентябрьский остаток представляет собой выброс — это весьма осложняет получение (по применяемой статистической модели) точного прогноза на октябрь 1998 г. Впрочем, выбросом можно считать и остатки, полученные в августе 1998 г., если снизить уровень для выбросов до двух стандартных отклонений.

Помимо стандартных остатков для анализа выбросов используются также стьюдентизированные остатки, которые представляют собой частное от деления обычного остатка на

оценку его стандартного отклонения. Хотя теоретически все случайные ошибки, полученные после решения уравнения регрессии, считаются независимыми и имеющими одну и ту же дисперсию, однако в действительности конкретные остатки в силу своего различенного положения во временном ряду отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий [14] . Поэтому чтобы учесть эту разницу в дисперсии остатков, их необходимо стьюдентизировать, т. е. оценить с учетом их положения в выборке. Формулу по расчету стьюдентизированных остатков мы дадим далее, а сейчас приведем алгоритм действий, с помощью которого можно быстро получить стьюдентизированные остатки. Правда, в Excel такая возможность отсутствует, но в последних версиях EViews эту процедуру можно реализовать с помощью статистики влияния остатков (INFLUENCE STATISTICS). Чтобы уяснить, как это делается, надо прочитать алгоритм действий № 17.

14

Дрейпер Н., Смит Г. Прикладной регрессионный анализ. С. 190.

Алгоритм действий № 17
Диагностика в EViews влияния стьюдентизированных остатков на уравнение регрессии для прогностической модели
USDOLLAR = а x USDOLLAR(-1) + b x USDOLLAR(-2)
Шаг 1. Как получить стьюдентизированные остатки

После решения уравнения регрессии (на основе рыночных данных по курсу доллара за период с июня 1992 г. по сентябрь 1998 г.) в строке EQUATION выбираем опции VIEW/STABILITY DIAGNOSTICS/INFLUENCE STATISTICS. В результате на экране появляется диалоговое мини-окно INFLUENCE STATISTICS, которое нужно соответствующим образом заполнить, чтобы провести диагностику остатков (рис. 5.6). Чтобы получить как графический, так и табличный вариант по статистике влияния остатков в параметре OUTPUT TYPE (тип выходной статистики), следует установить опции GRAPH (график) и TABLE (таблица). Далее в параметре OUTPUT STATISTICS (выходная статистика) ставим галочку у опции RSTUDENT (стьюдентизированные остатки) и рядом пишем RS — название файла, который будет помещен в рабочий файл.

Шаг 2. Интерпретация влияния стьюдентизированных остатков на точность прогноза

В результате шага 1 получены диаграмма (она приведена на рис. 5.7) и табл. 5.8. Интерпретация диаграммы довольно проста, поскольку на ней представлен график значений стьюдентизированных остатков, который с обеих сторон выделен пунктирной линией и обозначает область допустимых значений, равных ± 2. Когда стьюдентизированные остатки выходят за пределы этой пунктирной линии, в этом наблюдении их можно считать выбросами. Легко заметить, что особенно велик стьюдентизированный остаток, полученный в сентябре 1998 г.

В таблице 5.8 приведена часть полученных с помощью EViews значений стьюдентизированных остатков (за период с января 1997 г. по сентябрь 1998 г.). При этом стьюдентизированные остатки, которые считаются выбросами (их величина больше или меньше 2), при выводе итогов обозначаются EViews красным шрифтом (в таблице они подчеркнуты). При этом область допустимых значений определяется с помощью уже известной нам t– статистики. В частности, выбросами считаются остатки, которые получены не только в сентябре, но и в августе 1998 г. Если сравнить стандартные остатки из табл. 5.7 со стьюдентизированными остатками, то легко заметить, что значения последних — за счет выросшей дисперсии между наблюдениями — наиболее сильно отличаются от значений первых для августа и сентября 1998 г.

Некоторые математические подробности по расчету стьюдентизированных остатков в EViews

Теоретически все случайные ошибки предполагаются независимыми и имеющими одну и ту же дисперсию 2,

однако в действительности конкретные остатки отнюдь не независимы и, следовательно, не имеют одинаковых дисперсий. В действительности дисперсия остатков зависит не только от величины 2, но и от hi — i-го диагонального элемента матрицы вида Хt(Х`Х)– 1Хt, с которой мы уже познакомились в главе 3.

Стьюдентизированные остатки в EVews рассчитываются по формуле

где еt — остаток для конкретного наблюдения, полученный по уравнению регрессии, построенному с учетом всех наблюдений временного ряда;

s(i) — стандартное отклонение остатков, полученное по уравнению регрессии, построенному по тому же временному ряду без учета наблюдения i;

ht — i– ный диагональный элемент матрицы вида Хt(ХХ)– 1Хt.

При необходимости i– ный диагональный элемент матрицы Хt(ХХ)– 1Хt можно найти для каждого наблюдения, если в диалоговом мини-окне INFLUENCE STATISTICS установить опцию ПАТ MATRIX (т. е. матрица Хt(ХХ)– 1Хt).

Например, величина стьюдентизированного остатка для сентября 1998 г. равна

Распределение стьюдентизированных остатков подчиняется t– статистике, получаемой в результате подстановки фиктивной переменной в первоначальное уравнение регрессии. Причем фиктивная переменная для интересующего нас наблюдения i равна 1, а для всех остальных наблюдений она равна 0. Таким образом, стьюдентизированный остаток можно интерпретировать как тест на значимость остатка определенного наблюдения с точки зрения его влияния на уравнение регрессии.

Следует заметить, что если у кого-то из читателей нет последней версии EViews или иных программ, умеющих рассчитывать стьюдентизированные остатки, то в принципе для обнаружения выбросов вполне возможно пользоваться стандартными остатками. Во всяком случае, как утверждают Н. Дрейпер и Г Смит, в подавляющем большинстве случаев, хотя и не во всех, для обнаружения выбросов вполне достаточно пользоваться графиками обычных и стандартных остатков [15] .

Чтобы убедиться в справедливости этих слов, мы провели небольшой эксперимент. С этой целью уравнение регрессии USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2) решено на основе данных за период с июня 1992 г. по апрель 2010 г., а затем рассмотрены полученные остатки (табл. 5.9). В том случае, когда стьюдентизированные остатки диагностируют выбросы, стандартные остатки также их выявляют (если к выбросам отнести остатки, имеющие два стандартных отклонения). Правда, поскольку стьюдентизированные остатки учитывают не только стандартное отклонение, но и дисперсию между различными наблюдениями (формула (5.6)), то величина стьюдентизированных остатков всегда выше. Причем особенно заметна эта разница относительно сентября 1998 г. и января 2009 г., т. е. когда на валютном рынке наблюдалась максимальная волатильность, обусловленная в первом случае августовским дефолтом 1998 г., а во втором случае — глобальным финансовым кризисом 2008–2009 гг.

15

Дрейпер Н., Смит Г. Прикладной регрессионный анализ. С. 190.

5.5. Тесты Чоу на наличие структурной стабильности во временно м ряде

Диагностика выбросов в остатках является не единственным инструментом для выявления проблем, мешающих повышению точности прогностических моделей. В этом смысле, пожалуй, еще большее значение имеет тест Грегори Чоу на наличие структурной стабильности временного ряда. Поэтому следующим нашим шагом будет оценка на основе этого теста стабильности временного ряда за период с июня 1992 г. по апрель 2010 г. С методикой проведения этого теста можно познакомиться в алгоритме действий № 18.

Поделиться:
Популярные книги

Удиви меня

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Удиви меня

Live-rpg. эволюция-5

Кронос Александр
5. Эволюция. Live-RPG
Фантастика:
боевая фантастика
5.69
рейтинг книги
Live-rpg. эволюция-5

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Наемный корпус

Вайс Александр
5. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
космоопера
5.00
рейтинг книги
Наемный корпус

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Измена. Верну тебя, жена

Дали Мила
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верну тебя, жена