Чтение онлайн

на главную

Жанры

Каталитический риформинг бензинов. Теория и практика
Шрифт:

Значения энергии активации для ряда реакций платформинга, кДж/моль, представлены ниже:

– изомеризация парафиновых и нафтеновых углеводородов – 105,

– дегидрирование парафиновых и нафтеновых углеводородов – 84,

– дегидроциклизация парафинов – 145,

– крекинг – 185,

– коксование – 145 [50].

На рис. 12 приведены значения относительных скоростей реакций платформинга при температуре 500 С для различных парциальных давлений водорода.

Базовым уровнем является скорость дегидрирования, ее значение принято за 100 %.

Крекинг здесь представлен как сумма реакций гидрогенолиза и гидрокрекинга.

Для

реакции образования кокса скорость при парциальном давлении водорода 10 бар принята за единицу.

Рис. 12. Скорость реакций платформинга

Дегидрирование нафтенов является самой быстрой реакцией платформинга, ее скорость в 7–8 раз превышает таковую для реакции изомеризации парафиновых и нафтеновых углеводородов и примерно в 30 раз скорость реакций крекинга и дегидроциклизации.

Реакция образования кокса является самой медленной реакцией платформинга.

Для реакций дегидроциклизации и крекинга константы скорости зависят также от длины углеродной цепи и увеличиваются при ее росте.

Особенно резкое увеличение констант скорости наблюдается для реакции дегидроциклизации при переходе от н-гексана к н-гептану, что объясняется статистическим фактором, а именно увеличением количества вариантов замыкания цепи.

Дегидроциклизация н-гексана в условиях бифункционального катализа протекает по схеме:

Лимитирующей стадией этих превращений является циклизация олефина с образованием 5-членного кольца.

Природа высокого энергетического барьера этой реакции может быть обусловлена циклической структурой активированного комплекса, являющегося переходным состоянием химической системы на ее пути от реагентов к продуктам реакции.

В соответствии с теорией активированного комплекса константа скорости реакции

где H# и S# – это изменение энтальпии и энтропии системы при образовании активированного комплекса.

Очевидно, что при образовании циклического комплекса энтропия системы уменьшается. Оценка изменения энтропии может быть сделана по изменению энтропии реакции циклизации.

Результаты представлены ниже в сравнении с изменением энтропии реакции изомеризации н-гексена-1 в 2-метилпентен-1 (табл. 4).

Таблица 4

Изменение термодинамических параметров при 800 К

Параметр

Изомеризация

С5– циклизация

С6– циклизация

rG

rH

rS

–9500

+9400

+0,2

–15 600

–60 300

–56,0

–8300

–84 200

–94,8

Из данных табл. 4 следует, что при циклизации происходит значительное уменьшение энтропии. Применяя эти цифры для активированного комплекса, найдем отношение констант скорости реакции циклизации и изомеризации – 0,0012. Расчет отношения констант скоростей по энергиям активации дает такие же значение – 0,0012. Совпадение скорее случайное,

но даже такой грубый расчет показывает, что вклад энтропии образования активированного комплекса может быть определяющим фактором низкой скорости С5– циклизации.

Увеличение скорости циклизации при переходе от н-гексана к н-гептану приводит к существенному увеличению селективности ароматизации алкана.

В табл. 4 представлено также изменение энтропии реакции при С6– циклизации 2-метилпентена-1: в этой реакции происходит еще более значительное уменьшение энтропии.

Если применить аналогичный подход для оценки отношения констант скорости двух альтернативных маршрутов циклизации, получим величину отношения С65, равную 0,01. Это коррелирует с кинетическими данными, в соответствии с которыми С5– циклизация является главным маршрутом дегидроциклизации парафиновых углеводородов риформинга на бифункциональном катализаторе.

Механизм циклизации достоверно не установлен.

В соответствии с гипотезой Гейтса [2], циклизация протекает по согласованному механизму с участием кислотного бренстедовского и основного льюисовского центров:

,

где А – кислотный бренстедовский центр; В – льюисовский основный центр.

Альтернативная гипотеза предполагает участие только льюисовских центров и поддерживается рядом экспериментальных фактов: отсутствие эффекта ингибирования азотом реакции циклизации, но ингибирование реакции расширения цикла. Известно также, что реакция циклизации может быть затруднена при увеличении влажности, что связывают с превращением льюисовских центров в бренстедовские.

При термодинамическом контроле направление и выход продуктов химического превращения определяются величиной и знаком изменения энергии Гиббса.

В случае кинетического контроля основным продуктом превращения является продукт реакции с меньшей энергией активации. Примером может служить превращение олефинов на кислотных центрах катализатора риформинга.

Из двух возможных химических реакций – изомеризации и гидрокрекинга – основным продуктом превращения является олефин, хотя его образование сопровождается меньшим понижением энергии химической системы. Превращение олефинов на кислотных центрах в условиях кинетического контроля обеспечивает высокую селективность процесса риформинга. Увеличение кислотности катализатора, повышение температуры процесса, увеличение времени контакта будет благоприятствовать протеканию реакции гидрокрекинга и снижению селективности ароматизации сырья.

Примером превращения, протекающего под термодинамическим контролем, является реакция изомеризации алканов, рассматривающаяся как совокупность параллельных реакций, каждая из которых приводит к образованию определенного изомера. Скорости реакций примерно одинаковы, и состав продуктов суммарного превращения определяется стремлением химической системы минимизировать энергию Гиббса.

В зависимости от того, что контролирует превращение, термодинамика или кинетика, зависит эффект, достигаемый от изменения температуры процесса.

Поделиться:
Популярные книги

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Великий род

Сай Ярослав
3. Медорфенов
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Великий род