Каталитический риформинг бензинов. Теория и практика
Шрифт:
Переход системы в более устойчивое состояние с меньшей энергией Гиббса достигается путем коалесценции частиц при повышенных температурах или за счет адсорбции молекул окружающей среды. Из двух видов адсорбции, физической и химической, последняя имеет ключевое значение для гетерогенного катализа, так как связана с активацией молекулы, обусловленной изменениями ее электронной структуры при адсорбции на поверхности твердого тела.
В основе современного понимания механизма химической адсорбции и катализа на d– металлах лежат идеи о координационно-донорной и дативной связях и d– зоне,
Дьюар в 1951 году предложил модель образования соли Цейзе и ее палладиевого аналога, комплекса Караша, представляющих собой комплексы этилена и металла (рис. 18) [37].
Рис. 18. Структура комплексов Pt(Pd) c этиленом
В соответствии с этой моделью, в доработанном виде носящей название модели Дьюара – Чата – Дункансона, в образовании комплекса принимают участие два типа связей: донорно-акцепторная связь, образуемая за счет передачи электронной плотности -связи молекулы этилена на вакантную d– орбиталь атома платины, и дативная связь, которая возникает за счет перекрытия заполненной d– орбитали атома металла с разрыхляющей орбиталью молекулы этилена. Заметим, что обе связи являются примером донорно-акцепторного взаимодействия, так что выделение дативной связи сделано для удобства, это указание на то, что донором в этом случае является металл.
Атомными орбиталями, удовлетворяющими этому требованию, являются dz2– и dxz– орбитали переходного металла.
Ниже представлены схемы образования донорно-акцепторной и дативной связей d– металла и молекулы этилена (рис. 19). Донорно-акцепторная связь образуется при перекрывании -МО этилена с dz2– AO металла. В образовании дативной связи участвуют разрыхляющая *-МО этилена и dxy– АО металла.
Рис. 19. Схема образования – и -связей:
стрелками показаны направления смещения электронной плотности
Образование донорно-акцепторной связи осуществляется по -типу, а дативной связи – по -типу.
Для образования дативной связи возможны два варианта перекрывания орбиталей.
Из-за небольших стерических затруднений, возникающих при боковом перекрывании, в рассмотренных комплексах реализуется схема с расположением иона металла над или под плоскостью, в которой находятся sp2– орбитали молекулы этилена.
При отсутствии таких ограничений может реализовываться схема с боковым перекрыванием, например, при образовании связи с молекулой СО, где такому перекрыванию способствует также несимметричное распределение электронной плотности в лепестках разрыхляющей орбитали, связанное с поляризацией связи.
Прочность донорно-акцепторной и дативной связи увеличивается с уменьшением различия в энергии донорной и акцепторной орбиталей в соответствии с величиной
Естаб ~ S2/,
где S – интеграл перекрывания; – разница в энергии исходных орбиталей.
При переносе электронной плотности с -орбитали этилена происходит накопление положительного заряда в молекуле, что ограничивает перенос электронов, в то же время обратный перенос с занятых орбиталей металла нейтрализует этот заряд, и позволяет продолжить формирование более прочной донорно-акцепторной связи.
В свою очередь передача электронной плотности с молекулы на металл увеличивает донорные свойства металла.
В итоге имеет место синергизм, который приводит к образованию более прочной связи металла и молекулы и более значительному ослаблению связи в молекуле.
Для комплексов Цейзе и Караша связывание является слабым из-за пониженного дативного потенциала положительно заряженных ионов платины и палладия.
Результатом рассмотренных взаимодействий является уменьшение порядка и прочности углерод-углеродной связи в молекуле, что коррелирует с увеличением длины связи и со смещением пиков инфракрасного поглощения в длинноволновую область спектра.
Так, длина связи С–С увеличивается со 133,7 пм в свободной молекуле этилена до 137,0 пм в комплексе платины и этилена и до 148,0 пм в комплексе этилена и никеля Ni(CO)4 [37].
Квантово-механический анализ взаимодействия на примере связывания молекулы СО и переходных металлов первой серии (3d– металлы) представлен в [106].
Электронная структура молекулы СО представлена на рис. 20.
Рис. 20. Электронная структура молекулы СО:
HOMO – high occupated molecular orbital;
LUMO – low unoccupated molecular orbital
В образовании связей в молекуле принимают участие
1-орбиталь и две 1-орбитали.
Молекулярные орбитали 2 и 3 не вносят вклада в связывание и являются фактически не поделенными электронными парами кислорода и углерода соответственно.
На самом деле орбиталь 3 является слегка разрыхляющей орбиталью для молекулы. Эта орбиталь участвует в донорно-акцепторном связывании с d– металлом в качестве донора электронов.
Особенностью электронного строения молекулы СО является несимметричное распределение электронной плотности между лепестками - и *-МО. Несимметричность обусловлена различиями в электроотрицательности и в уровнях энергии атомов углерода и кислорода, образующих молекулу.
– МО является связующей в молекуле, и по энергии она ближе к энергии p– AO кислорода, в связи с чем электронная плотность смещена в лепесток у атома кислорода.
*-орбиталь как разрыхляющая орбиталь молекулы ближе по энергии к p– орбитали атома углерода, что обусловливает концентрацию электронной плотности орбитали в лепестке у атома углерода (рис. 21).