Книга по химии для домашнего чтения
Шрифт:
9.6. ХЛОР
Шведский химик Шееле (см. 2.7) как-то изучал действие различных кислот на минерал пиролюзит (диоксид марганца MnO2). В один из дней он стал нагревать минерал с хлороводородной кислотой HCl и почувствовал запах, характерный для «царской водки» (см. 3.13; 5.39):
MnO2 + 4HCl = Cl2^ + MnСl2 + 2Н2O.
Шееле собрал желто-зеленый газ, вызвавший этот запах, исследовал его свойства и назвал «дефлогистированной соляной кислотой», иначе «оксидом соляной кислоты». Позднее выяснилось, что Шееле открыл новый химический элемент хлор Cl (см. 4.37).
9.7.
В 1872 г. в лаборатории профессора Айра Ремсена (1846–1927) в Балтиморе (США) работал молодой русский эмигрант Фальберг. Случилось так, что окончив синтез некоторых производных толуол сульфамида C6H4(SO2)NH2(CH3), Фальберг отправился в столовую, забыв вымыть руки. Во время обеда он почувствовал сладкий вкус во рту. Это его заинтересовало… Он поспешил в лабораторию, начал проверять все реагенты, которые применял в синтезе. Среди отбросов в сливной чаше Фальберг обнаружил выброшенный им накануне промежуточный продукт синтеза, который был очень сладким. Вещество назвали сахарином, химическое же его название — имидо-сульфобензойной кислоты C6H4(SO2)CO(NH). Сахарин отличается своим необыкновенно сладким вкусом. Его сладость превосходит в 500 раз сладость обыкновенного сахара (см. 1.61; 6.16; 7.34). Сахарин употребляют в качестве заменителя сахара для больных диабетом.
9.8. ИОД И КОТ
Друзья Куртуа (см. 4.39), открывшего новый химический элемент иод, рассказывают любопытные подробности этого открытия. У Куртуа был любимый кот, который во время обеда сидел обычно на плече своего хозяина. Куртуа часто обедал в лаборатории. В один из дней во время обеда кот, чего-то испугавшись, прыгнул на рол, но пошл на бутылки, стоявшие около лабораторного стола. В одной бутылке Куртуа приготовил для опыта суспензию золы водорослей в этаноле C2H5OH, а в другой находилась концентрированная серная кислота H2SO4. Бутылки разбились, и жидкости смешались. C пола стали подниматься клубы сине-фиолетового пара, которые оседали на окружающих предметах в виде мельчайших черно-фиолетовых кристалликов с металлическим блеском и едким запахом. Это был новый химический элемент иод (см. 1.58). Так как зола некоторых водорослей содержит иодид натрия NaI, то образование иода объясняет следующая реакция:
2NaI + 2H2SO4 = I2 + SO2^ + Na2SO4 + 2Н2O.
9.9. АМЕТИСТ
Русский геохимик Э. Емлин как-то прогуливался с собакой в окрестностях Екатеринбурга. В траве недалеко от дороги он заметил невзрачный с виду камень. Собака стала рыть землю около камня, а Емлин палкой стал ей помогать. Общими усилиями они вытолкнули камень из земли. Под камнем оказалась целая россыпь кристаллов драгоценного камня аметиста (см. 10.30). Прибывший на это место поисковый отряд геологов в первый же день добыл сотни килограммов фиолетового минерала.
9.10. ДИНАМИТ
Однажды бутыли с нитроглицерином — сильным взрывчатым веществом (см. 1.37) — перевозили в ящиках, засыпанных пористой горной породой, называемой инфузорной землей, или кизельгуром. Это было необходимо во избежание повреждений бутылей во время перевозки, что всегда приводило к взрыву нитроглицерина. В дороге одна из бутылей все-таки разбилась, но взрыва не произошло. Кизельгур впитал как губка всю вылившуюся жидкость. Владелец нитроглицериновых заводов Нобель (см. 2.30) обратил внимание не только на отсутствие взрыва, но и на то, что кизельгур впитал почти трехкратное количество нитроглицерина по сравнению с собственной массой. Проведя опыты, Нобель установил, что кизельгур, пропитанный нитроглицерином, от удара не взрывается. Взрыв происходит только от взрыва детонатора. Так был получен первый динамит. Заказы на его производство посыпались к Нобелю из всех стран.
9.11. ТРИПЛЕКС
В 1903
Случай натолкнул Бенедиктуса на мысль о небьющемся стекле. Склеивая под небольшим давлением два листа обычного стекла с прокладкой из коллодия, а затем три листа с прокладкой из целлулоида, химик получил трехслойное небьющееся стекло «триплекс». Напомним, что целлулоид — прозрачная пластмасса, получаемая из коллодия, к которому добавляют пластификатор — камфару.
9.12. ПЕРВЫЙ КАРБОНИЛ
В 1889 г. в лаборатории Монда (см. 630) было обращено внимание на яркое окрашивание пламени при сжигании газовой смеси, состоящей из водорода H2 и монооксида углерода СО, когда эту смесь пропускали через никелевые трубки или никелевый вентиль. Исследование показало, что причиной окрашивания пламени является наличие в газовой смеси летучей примеси. Примесь выделили путем вымораживания и проанализировали. Ею оказался тетракарбонил никеля [Ni(CO)4]. Так был открыт первый карбонил металлов семейства железа.
9.13. ГАЛЬВАНОПЛАСТИКА
В 1836 г. русский физик и электротехник Борис Семенович Якоби (1801–1874) проводил обычный электролиз водного раствора сульфата меди CuSO4 и на одном из медных электродов увидел образовавшееся тонкое медное покрытие:
[Cu(H2O)4]2+ + 2е– = CuV + 4Н2O.
Обсуждая это явление, Якоби пришел к мысли о возможности изготовления медных копий с любых вещей. Так началось развитие гальванопластики. В этом же году впервые в мире путем электролитического наращивания меди Якоби изготовил клише для печатания бумажных денежных знаков. Предложенный им метод вскоре распространился в других странах.
9.14. НЕОЖИДАННЫЙ ВЗРЫВ
Однажды на химическом складе обнаружили две забытые бутыли диизопропилового эфира — бесцветной жидкости (CH3)2CHOCH(CH3)2 с температурой кипения 68°C. К удивлению химиков, на дне бутылей оказалась кристаллическая масса, похожая на камфару. Кристаллы выглядели вполне безобидно. Один из химиков вылил жидкость в раковину и попытался растворить кристаллический осадок водой, но это ему не удалось. Тогда бутыли, которые не удалось вымыть, отвезли на городскую свалку без всяких предосторожностей. А там кто-то кинул в них камнем. Последовал сильнейший взрыв, по мощности равный взрыву нитроглицерина (см. 9.10). Впоследствии выяснилось, что в эфире в результате медленного окисления образуются полимерные пероксидные соединения — сильные окислители, огнеопасные и взрывчатые вещества.
9.15. ИСКУССТВЕННАЯ КРОВЬ
Химик Уильям-Менсфилд Кларк (1884–1964) из Медицинского колледжа штата Алабама (США), решив утопить пойманную крысу, погрузил ее с головой в первый попавшийся ему на глаза стакан с силиконовым маслом, стоявший на лабораторном столе. К его удивлению, крыса не захлебнулась, а дышала жидкостью почти 6 часов. Оказалось, что силиконовое масло было насыщено кислородом для какого-то опыта. Это наблюдение послужило началом работ по созданию «дыхательной жидкости» и искусственной крови. Силиконовое масло — жидкий кремнийорганический полимер, способный растворять и удерживать до 20% кислорода. В воздухе, как известно, содержится 21% кислорода. Поэтому силиконовое масло и обеспечивало некоторое время жизнедеятельность крысы. Еще большее количество кислорода (более 1 л на каждый литр жидкости) поглощает перфтордекалин C10F18, применяемый в качестве искусственной крови.